## APPENDICES

APPENDIX A. THE WORLD SAILING SHIP ROUTES ..... 705
APPENDIX B. CALCULATIONS AND CONVERSIONS ..... 707
APPENDIX C. SATELLITE NAVIGATION SIGNAL CODING ..... 721


## APPENDIX B

# CALCULATIONS AND CONVERSIONS 

## INTRODUCTION

## App B 1. Purpose and Scope

This chapter discusses the use of calculators and computers in navigation and summarizes the formulas the navigator depends on during voyage planning, piloting, celestial navigation, and various related tasks. To fully utilize this chapter, the navigator should be competent in basic mathematics including algebra and trigonometry (See Chapter 1 - Mathematics in Volume II) and be familiar with the use of a basic scientific calculator. The navigator should choose a calculator based on personal needs, which may vary greatly from person to person according to individual abilities and responsibilities.

## App B 2. Use of Calculators in Navigation

Any common calculator can be used in navigation, even one providing only the four basic arithmetic functions of addition, subtraction, multiplication, and division. Any good scientific calculator can be used for sight reduction, sailings, and other tasks. However, the use computer applications and handheld calculators specifically designed for navigation will greatly reduce the workload of the navigator, reduce the possibility of errors, and assure accuracy of the results calculated.

Calculations of position based on celestial observations have become increasingly uncommon since the advent of GPS as a dependable position reference for all modes of navigation. This is especially true since GPS units provide worldwide positioning with far greater accuracy and reliability than celestial navigation.

However, for those who use celestial techniques, a celestial navigation calculator or computer application can improve celestial position accuracy by easily solving numerous sights, and by reducing mathematical and tabular errors inherent in the manual sight reduction process. They can also provide weighted plots of the LOP's from any number of celestial bodies, based on the navigator's subjective analysis of each sight, and calculate the best fix with latitude/longitude readout.

In using a calculator for any navigational task, it is important to remember that the accuracy of the result, even if carried out many decimal places, is only as good as the least accurate entry. If a sextant observation is taken to an accuracy of only a minute, that is the best accuracy of the final solution, regardless the calculator's ability to
solve to 12 decimal places. See Chapter 3 - Navigational Error in Volume II for a discussion of the sources of error in navigation

Some basic calculators require the conversion of degrees, minutes and seconds (or tenths) to decimal degrees before solution. A good navigational calculator, however, should permit entry of degrees, minutes and tenths of minutes directly, and should do conversions automatically. Though many non-navigational computer programs have an on-screen calculator, they are generally very simple versions with only the four basic arithmetical functions. They are thus too simple for complex navigational problems. Conversely, a good navigational computer program requires no calculator per se, since the desired answer is calculated automatically from the entered data.

The following articles discuss calculations involved in various aspects of navigation.

## App B 3. Calculations of Piloting

- Hull speed in knots is found by:
$S=1.34 \sqrt{\text { waterline length }}$ (in feet)
This is an approximate value which varies with hull shape.
- Nautical and U.S. survey miles can be interconverted by the relationships:

1 nautical mile $=1.15077945$ U.S. survey miles.

1 U.S. survey mile $=0.86897624$ nautical miles.

- The speed of a vessel over a measured mile can be calculated by the formula:

$$
S=\frac{3600}{T}
$$

where $S$ is the speed in knots and T is the time in seconds.

- The distance traveled at a given speed is computed
by the formula:
$D=\frac{S T}{60}$
where D is the distance in nautical miles, S is the speed in knots, and T is the time in minutes.
- Distance to the visible horizon in nautical miles can be calculated using the formula:
$\mathrm{D}=1.17 \sqrt{\mathrm{~h}_{\mathrm{f}}}$, or
$\mathrm{D}=2.07 \sqrt{\mathrm{~h}_{\mathrm{m}}}$
depending upon whether the height of eye of the observer above sea level is in feet $\left(h_{f}\right)$ or in meters $\left(h_{m}\right)$.
- Dip of the visible horizon in minutes of arc can be calculated using the formula:
$D=0.97^{\prime} \sqrt{h_{f}}$, or
$\mathrm{D}=1.76 \sqrt{\mathrm{~h}_{\mathrm{m}}}$
depending upon whether the height of eye of the observer above sea level is in feet $\left(\mathrm{h}_{\mathrm{f}}\right)$ or in meters $\left(\mathrm{h}_{\mathrm{m}}\right)$.
- Distance to the radar horizon in nautical miles can be calculated using the formula:
$\mathrm{D}=1.22 \sqrt{\mathrm{~h}_{\mathrm{f}}}$, or
$\mathrm{D}=2.21 \sqrt{\mathrm{~h}_{\mathrm{m}}}$
depending upon whether the height of the antenna above sea level is in feet $\left(h_{f}\right)$ or in meters $\left(h_{m}\right)$.
- Dip of the sea short of the horizon can be calculated using the formula:

$$
\text { Ds }=60 \tan ^{-1}\left(\frac{\mathrm{~h}_{\mathrm{f}}}{6076.1 \mathrm{~d}_{\mathrm{s}}}+\frac{\mathrm{d}_{\mathrm{s}}}{8268}\right)
$$

where Ds is the dip short of the horizon in minutes of arc; $\mathrm{h}_{\mathrm{f}}$ is the height of eye of the observer above sea level, in feet and $d_{s}$ is the distance to the waterline of the object in nautical miles.

- Distance by vertical angle between the waterline and the top of an object is computed by solving the right triangle formed between the observer, the top of the object, and the waterline of the object by simple trigonometry. This assumes that the observer is at sea level, the Earth is flat between observer and object, there is no refraction, and the object and its waterline form a right angle. For most cases of practical significance, these assumptions produce no large
errors. A table is computed by means of a formula:

$$
\mathrm{D}=\sqrt{\frac{\tan ^{2} \mathrm{a}}{0.0002419^{2}}+\frac{\mathrm{H}-\mathrm{h}}{0.7349}}-\frac{\tan \mathrm{a}}{0.0002419}
$$

where D is the distance in nautical miles, a is the corrected vertical angle, H is the height of the top of the object above sea level, and $h$ is the observer's height of eye in feet. The constants ( 0.0002419 and 0.7349 ) account for refraction.

## App B 4. Tide Calculations

- The rise and fall of a diurnal tide can be roughly calculated from the following table, which shows the fraction of the total range the tide rises or falls during flood or ebb.

| Hour | Amount of flood/ebb |
| :---: | :---: |
|  |  |
| 1 | $1 / 12$ |
| 2 | $2 / 12$ |
| 3 | $3 / 12$ |
| 4 | $3 / 12$ |
| 5 | $2 / 12$ |
| 6 | $1 / 12$ |

## App B 5. Calculations of Celestial Navigation

Unlike sight reduction by tables, sight reduction by calculator permits the use of nonintegral values of latitude of the observer, and LHA and declination of the celestial body. Interpolation is not needed, and the sights can be readily reduced from any assumed position. Simultaneous, or nearly simultaneous, observations can be reduced using a single assumed position. Using the observer's DR or MPP for the assumed longitude usually provides a better representation of the circle of equal altitude, particularly at high observed altitudes.

- The dip correction is computed in the Nautical Almanac using the formula:

$$
\mathrm{D}=0.97 \sqrt{\mathrm{~h}}
$$

where dip is in minutes of arc and $h$ is height of eye in feet. This correction includes a factor for refraction. The Air Almanac uses a different formula intended for air navigation. The differences are of no significance in practical navigation.

- The computed altitude (Hc) is calculated using the basic formula for solution of the undivided navigational triangle:

```
sinh= sinLsind + cosL\operatorname{cos}d\operatorname{cos}LHA,
```

in which $h$ is the altitude to be computed ( Hc ), L is the latitude of the assumed position, d is the declination of the celestial body, and LHA is the local hour angle of the body. Meridian angle ( $t$ ) can be substituted for LHA in the basic formula.
Restated in terms of the inverse trigonometric function:

Hc $=\sin ^{-1}[(\sin L \sin d)+(\cos L \cos d \cos L H A)]$.

When latitude and declination are of contrary name, declination is treated as a negative quantity. No special sign convention is required for the local hour angle, as in the following azimuth angle calculations.

- The azimuth angle ( Z ) can be calculated using the altitude azimuth formula if the altitude is known. The formula stated in terms of the inverse trigonometric function is:

$$
Z=\cos ^{-1}\left(\frac{\sin d-(\sin L \sin H c)}{(\cos L \cos H c)}\right)
$$

If the altitude is unknown or a solution independent of altitude is required, the azimuth angle can be calculated using the time azimuth formula:

$$
Z=\tan ^{-1}\left(\frac{\sin L H A}{(\cos L \tan d)-(\sin L \cos L H A)}\right)
$$

The sign conventions used in the calculations of both azimuth formulas are as follows: (1) if latitude and declination are of contrary name, declination is treated as a negative quantity; (2) if the local hour angle is greater than $180^{\circ}$, it is treated as a negative quantity.
If the azimuth angle as calculated is negative, add $180^{\circ}$ to obtain the desired value.

- Amplitudes can be computed using the formula:
$A=\sin ^{-1}(\sin d \sec L)$
this can be stated as
$A=\sin ^{-1}\left(\frac{\sin d}{\cos L}\right)$
where $A$ is the arc of the horizon between the prime vertical and the body, L is the latitude at the point of observation, and $d$ is the declination of the celestial body.


## App B 6. Calculations of the Sailings

- Plane sailing is based on the assumption that the meridian through the point of departure, the parallel through the destination, and the course line form a plane right
triangle, as shown in Figure B6.
From this: $\cos \mathrm{C}=\frac{1}{\mathrm{D}}, \sin \mathrm{C}=\frac{\mathrm{p}}{\mathrm{D}}$, and $\tan \mathrm{C}=\frac{\mathrm{p}}{1}$.
From this: $1=D \cos C, D=1 \sec C$, and $p=D \sin C$.
From this, given course and distance ( C and D ), the difference of latitude (l) and departure (p) can be found, and given the latter, the former can be found, using simple trigonometry. See Chapter 12 - The Sailings, Volume I.
- Traverse sailing combines plane sailings with two or more courses, computing course and distance along a series of rhumb lines. See Chapter 12 - The Sailings, Volume I.


Figure B6. The plane sailing triangle.

- Parallel sailing consists of interconverting departure and difference of longitude. Refer to Figure B6.

DLo $=p \sec L$, and $p=D L o \cos L$

- Mid-latitude sailing combines plane and parallel sailing, with certain assumptions. The mean latitude (Lm) is half of the arithmetical sum of the latitudes of two places on the same side of the equator. For places on opposite sides of the equator, the N and S portions are solved separately.

In mid-latitude sailing:

$$
\text { DLo }=p \text { sec } L m, \text { and } p=\text { DLo cos Lm }
$$

- Mercator Sailing problems are solved graphically on a Mercator chart. For mathematical Mercator solutions the formulas are:

$$
\tan \mathrm{C}=\frac{\mathrm{DLo}}{\mathrm{~m}} \text { or } \mathrm{DLo}=\mathrm{m} \tan \mathrm{C}
$$

where $m$ is the meridional part from Table 6 in the Tables Part of this volume. Following solution of the course angle by Mercator sailing, the distance is by the plane sailing formula:

$$
\mathrm{D}=1 \sec \mathrm{C}
$$

- Great-circle solutions for distance and initial course angle can be calculated from the formulas:

$$
\mathrm{D}=\cos ^{-1}\left[\left(\sin \mathrm{~L}_{1} \sin \mathrm{~L}_{2}+\cos \mathrm{L}_{1} \cos \mathrm{~L}_{2} \cos \mathrm{DLo}\right)\right]
$$

and
$C=\tan ^{-1}\left(\frac{\sin D L o}{\left(\cos L_{1} \tan L_{2}\right)-\left(\sin L_{1} \cos D L o\right)}\right)$
where D is the great-circle distance, C is the initial great-circle course angle, $L_{1}$ is the latitude of the point of departure, $\mathrm{L}_{2}$ is the latitude of the destination, and DLo is the difference of longitude of the points of departure and destination. If the name of the latitude of the destination is contrary to that of the point of departure, it is treated as a negative quantity.

- The latitude of the vertex, $\mathrm{L}_{\mathrm{v}}$, is always numerically equal to or greater than $L_{1}$ or $L_{2}$. If the initial course angle $C$ is less than $90^{\circ}$, the vertex is toward $L_{2}$, but if C is greater than $90^{\circ}$, the nearer vertex is in the opposite direction. The vertex nearer $L_{1}$ has the same name as $L_{1}$.

The latitude of the vertex can be calculated from the formula:

$$
L_{v}=\cos ^{-1}\left(\cos L_{1} \sin C\right)
$$

The difference of longitude of the vertex and the point of departure $\left(\mathrm{DLo}_{\mathrm{v}}\right)$ can be calculated from the formula:
$D L o_{v}=\sin ^{-1}\left(\frac{\cos C}{\sin L_{v}}\right)$.
The distance from the point of departure to the vertex
$\left(D_{v}\right)$ can be calculated from the formula:

$$
\mathrm{D}_{\mathrm{v}}=\sin ^{-1}\left(\cos \mathrm{~L}_{1} \sin \mathrm{DLo}_{\mathrm{v}}\right)
$$

- The latitudes of points on the great-circle track can be determined for equal DLo intervals each side of the vertex $\left(\mathrm{DLo}_{\mathrm{vx}}\right)$ using the formula:

$$
L_{x}=\tan ^{-1}\left(\cos D L_{v x} \tan L_{v}\right)
$$

The $\mathrm{DLo}_{\mathrm{v}}$ and $\mathrm{D}_{\mathrm{v}}$ of the nearer vertex are never greater than $90^{\circ}$. However, when $L_{1}$ and $L_{2}$ are of contrary name, the other vertex, $180^{\circ}$ away, may be the better one to use in the solution for points on the great-circle track if it is nearer the mid point of the track.

The method of selecting the longitude (or $\mathrm{DLo}_{\mathrm{vx}}$ ), and determining the latitude at which the great-circle crosses the selected meridian, provides shorter legs in higher latitudes and longer legs in lower latitudes. Points at desired distances or desired equal intervals of distance on the great-circle from the vertex $\left(\mathrm{D}_{\mathrm{vx}}\right)$ can be calculated using the formulas:

$$
\mathrm{L}_{\mathrm{x}}=\sin ^{-1}\left[\sin \mathrm{~L}_{\mathrm{v}} \cos \mathrm{D}_{\mathrm{vx}}\right]
$$

and

$$
\mathrm{DLo}_{\mathrm{vx}}=\sin ^{-1}\left(\frac{\sin \dot{\mathrm{D}}_{\mathrm{vx}}}{\cos \mathrm{~L}_{\mathrm{x}}}\right)
$$

A calculator which converts rectangular to polar coordinates provides easy solutions to plane sailings. However, the user must know whether the difference of latitude corresponds to the calculator's X-coordinate or to the Y-coordinate.

## App B 7. Calculations of Meteorology and Oceanography

- Converting thermometer scales between centigrade, Fahrenheit, and Kelvin scales can be done using the following formulas:

$$
\begin{aligned}
& \mathrm{C}^{\circ}=\frac{5\left(\mathrm{~F}^{\circ}-32^{\circ}\right)}{9}, \\
& \mathrm{~F}^{\circ}=\frac{9}{5} \mathrm{C}^{\circ}+32^{\circ} \text {, and } \\
& \mathrm{K}^{\circ}=\mathrm{C}^{\circ}+273.15^{\circ}
\end{aligned}
$$

- Maximum length of sea waves can be found by the
formula:
$\mathrm{W}=1.5 \sqrt{\text { fetch in nautical miles }}$.
- Wave height $=0.026 S^{2}$ where $S$ is the wind speed in knots.
- Wave speed in knots
$=1.34 \sqrt{\text { wavelength in feet }}$, or
$=3.03 \times$ wave period in seconds .


## UNIT CONVERSION

Use the conversion tables that appear on the following pages to convert between different systems of units. Conversions followed by an asterisk* are exact relationships.

## MISCELLANEOUS DATA




## Charts



## Earth



World Geodetic System (WGS) Ellipsoid of 1984
Equatorial radius (a) $z_{-} z_{-} z_{-}$

$$
=3,443.918 \text { nautical miles }
$$

Polar radius (b) _ _ _ _ _ _ _ _ _ _ _ = 6,356,752.314 meters
$=3432.372$ nautical miles
Mean radius $(2 a+b) / 3$
$=6,371,008.770$ meters
$=3440.069$ nautical miles
Flattening or ellipticity ( $\mathrm{f}=1-\mathrm{b} / \mathrm{a}$ ) $\ldots^{\prime} \ldots \ldots=1 / 298.257223563$
$=0.003352811$
Eccentricity $\left(e=\left(2 f-f^{2}\right)^{1 / 2}\right) \ldots \ldots \ldots \ldots{ }^{2} .081819191$
Eccentricity squared ( $\mathrm{e}^{2}$ ) _ _ _ _ _ _ _ _ = 0.006694380

## Length




## Meteorology

Atmosphere (dry air)



## Pressure


$=0.000001$ bar*

$=0.980665$ hectopascal (millibar)*
$=0.07355592$ centimeter of mercury
$=0.0289590$ inch of mercury
$=0.0142233$ pound per square inch
$=0.001$ kilogram per square centimeter*
$=0.000967841$ atmosphere
1 hectopascal (millibar) _ _ _ _ _ _ $=1,000$ dynes per square centimeter*
$=1.01971621$ grams per square centimeter
$=0.7500617$ millimeter of mercury
$=0.03345526$ foot of water
$=0.02952998$ inch of mercury
$=0.01450377$ pound per square inch
$=0.001$ bar*
$=0.00098692$ atmosphere

$=1.3332237$ hectopascals (millibars)
$=0.1$ centimeter of mercury*
$=0.04460334$ foot of water
$=0.039370079$ inch of mercury
$=0.01933677$ pound per square inch
$=0.001315790$ atmosphere
1 centimeter of mercury _ _ _ _ _ _ _ _ = 10 millimeters of mercury*
1 inch of mercury _ _ _ _ _ _ _ _ = 34.53155 grams per square centimeter
$=33.86389$ hectopascals (millibars)
$=25.4$ millimeters of mercury*
$=1.132925$ feet of water
$=0.4911541$ pound per square inch
$=0.03342106$ atmosphere
1 centimeter of water _ _ _ _ _ _ _ _ _ = 1 gram per square centimeter
$=0.001$ kilogram per square centimeter
1 foot of water_ _ _ _ _ _ _ _ _ _ _ $=30.48000$ grams per square centimeter
$=29.89067$ hectopascals (millibars)
$=2.241985$ centimeters of mercury
$=0.882671$ inch of mercury
$=0.4335275$ pound per square inch
$=0.02949980$ atmosphere
1 pound per square inch
$=68,947.57$ dynes per square centimeter
$=70.30696$ grams per square centimeter
$=70.30696$ centimeters of water
$=68.94757$ hectopascals (millibars)
$=51.71493$ millimeters of mercury
$=5.171493$ centimeters of mercury
$=2.306659$ feet of water
$=2.036021$ inches of mercury


|  |
| :---: |
|  |  |
|  |
| $=6.228822$ imperial (British) gallons |
| $=0.028316846592$ cubic meter* |
| 1 cubic yard_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ = 46,656 cubic inches* |
| $=764.554857984$ liters* |
| $=201.974026$ U.S. gallons |
| $=168.1782$ imperial (British) gallons |
| $=27$ cubic feet* |
| $=0.764554857984$ cubic meter* |
| 1 milliliter _ _ _ _ _ _ _ _ _ _ _ _ = 0.06102374 cubic inch |
| $=0.0002641721$ U.S. gallon |
| $=0.00021997$ imperial (British) gallon |
| 1 cubic meter _ _ _ _ _ _ _ _ _ _ _ _ _ _ = 264.172035 U.S. gallons |
| $\begin{aligned} & =219.96878 \text { imperial }(\text { British ) gallons } \\ & =35.31467 \text { cubic feet } \end{aligned}$ |
| $\begin{aligned} & =35.31467 \text { cubic feet } \\ & =1.307951 \text { cubic yards } \end{aligned}$ |
|  |
| 1 quart (U.S.) $\ldots \ldots \ldots$ - $\quad \begin{aligned} & 57.75 \text { cubic inches* } \\ &=32 \text { fluid ounces* }\end{aligned}$ |
| $=2$ pints* |
| $=0.9463529$ liter |
| $=0.25$ gallon* |
| 1 gallon (U.S.)_ _ _ _ _ _ _ _ _ _ _ _ _ = 3,785.412 milliliters |
| = 231 cubic inches* |
|  |  |
|  |
| $=3.785412$ liters |
| 1 liter $\ldots \ldots \ldots$. $\quad . \quad=0.8326725$ imperial (British) gallon |
|  |  |
|  |
| $=1.056688$ quarts |
| $=0.2641721$ gallon |
| 1 register ton _ _ _ _ _ _ _ _ _ _ _ _ _ _ = 100 cubic feet* |
| $=2.8316846592$ cubic meters* |
| 1 measurement ton _ _ _ _ _ _ _ _ _ _ $=40$ cubic feet* |
| - - - - ----- $=1$ freight ton* |
| 1 freight ton_ _ _ _ _ _ _ _ _ _ _ _ _ _ 40 cubic feet* |
| $=1$ measurement ton* |

## Volume-Mass



## Prefixes to Form Decimal Multiples and Sub-Multiples of International System of Units (SI)

| Multiplying factor |  | Prefix | Symbol |
| ---: | :--- | :--- | :--- |
| 1000000000000 | $=10^{12}$ | tera | T |
| 1000000000 | $=10^{9}$ | giga | G |
| 1000000 | $=10^{6}$ | mega | M |
| 1000 | $=10^{3}$ | kilo | k |
| 100 | $=10^{2}$ | hecto | h |
| 10 | $=10^{1}$ | deka | da |
| 0.1 | $=10^{-1}$ | deci | d |
| 0.01 | $=10^{-2}$ | centi | c |
| 0.001 | $=10^{-3}$ | milli | m |
| 0.000001 | $=10^{-6}$ | micro | H |
| 0.000000001 | $=10^{-9}$ | nano | n |
| 0.000000000001 | $=10^{-12}$ | pico | p |
| 0.000000000000001 | $=10^{-15}$ | femto | f |
| 0.000000000000000001 | $=10^{-18}$ | atto | a |

## NGA MARITIME SAFETY INFORMATION NAUTICAL CALCULATORS

NGA's Maritime Safety Office website offers a variety of online Nautical Calculators for public use. These calculators solve many of the equations and conversions typically associated with marine navigation. See the link provided below.


Link to NGA Nautical Calculators.
https://msi.nga.mil/NGAPortal/MSI.portal?_nfpb=true\&_st=\&_pageLabel=msi_portal_page_145

List of NGA Maritime Safety information Nautical Calculators https://msi.nga.mil

| Celestial Navigation Calculators |
| :---: |
| Compass Error from Amplitudes Observed on the Visible Horizon |
| Altitude Correction for Air Temperature |
| Table of Offsets |
| Latitude and Longitude Factors |
| Altitude Corrections for Atmospheric Pressure |
| Altitude Factors \& Change of Altitude |

List of NGA Maritime Safety information Nautical Calculators https://msi.nga.mil


## APPENDIX C

## SATELLITE NAVIGATION

## GPS SIGNAL CODING

## App C 1. The GPS L1 Band

The GPS L1 band (1575.42 MHz) has turned out to be the most important band for navigation purposes. Indeed most of the applications in the world nowadays are based on the signals transmitted at this frequency. Three signals are transmitted at the moment by GPS in L1: C/A Code, P(Y) Code and M-Code. In the future, an additional new civil signal, known as L1C, will also be transmitted. We describe all of them in the next lines:

- The Coarse/Acquisition (C/A) code signal was primarily thought of for acquisition of the P (or Y) code and has become nowadays the most important signal for mass market applications.
- The P Code is the precision signal and is coded by the precision code. Moreover the Y-Code is used in place of the P-code whenever the Anti-Spoofing (A/S) mode of operation is activated as described in the GPS ICDs 203, 224 and 225.
- The modernized military signal (M-Code) is designed exclusively for military use and is intended to eventually replace the $\mathrm{P}(\mathrm{Y})$ code [E. D. Kaplan and C. Hegarty, 2006]. The M-Code provides better jamming resistance than the $\mathrm{P}(\mathrm{Y})$ signal, primarily through enabling transmission at much higher power
without interference with C/A code or $\mathrm{P}(\mathrm{Y})$ code receivers [B.C. Barker et al., 2000]. Moreover, the M-Code provides more robust signal acquisition than is achieved today, while offering better security in terms of exclusivity, authentication, and confidentiality, along with streamlined key distribution. In other aspects, the M-Code signal provides much better performance than the $\mathrm{P}(\mathrm{Y})$ Code and more flexibility.
- The L1 Civil signal (L1C), defined in the [GPS ICD800], consists of two main components; one denoted $L 1 C_{P}$ to represent the pilot signal, consisting of a time-multiplexing of Binary Offset Carrier $\operatorname{BOC}(1,1)$ and $\operatorname{BOC}(6,1)$, thus without any data message, and $L 1 C_{D}$ with a pure $\operatorname{BOC}(1,1)$, for the data channel. This is spread by a ranging code and modulated by a data message. The pilot channel $L 1 C_{P}$ is also modulated by an SV unique overlay secondary code, $L 1 C_{O}$.
For more details on the code generation refer to the [GPS ICD 200] and [GPS ICD-800]. Finally, the technical characteristics of the existing and planned GPS signals in the L1 band are summarized in the following Table 1.

| GNSS System | GPS | GPS |  | GPS | GPS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Service Name | C/A | L1C |  | P(Y) Code | M-Code |
| Center Frequency | 1575.42 MHz | 1575.42 MHz |  | 1575.42 MHz | 1575.42 MHz |
| Frequency Band | L1 | L1 |  | L1 | L1 |
| Access Technique | CDMA | CDMA |  | CDMA | CDMA |
| Signal Component | Data | Data | Pilot | Data | N/A |
| Modulation | BPSK(1) | $\operatorname{TMBOC}(6,1,1 / 11)$ |  | BPSK(10) | $\mathrm{BOC}_{\text {sin }}(10,5)$ |
| Sub-carrier Frequency [MHz] | - | 1.023 | 1.023 \& 6.138 | - | 10.23 |
| Code Frequency | 1.023 MHz | 1.023 MHz |  | 10.23 MHz | 5.115 MHz |
| Primary PRN Code Length | 1023 | 10230 |  | $6.19 \times 10^{12}$ | N/A |
| Code Family | Gold Codes | Weil Codes |  | Combo and short cycling of M-sequences | N/A |

Table 1. GPS L1 signal technical characteristics.

| GNSS System | GPS | GPS | GPS | GPS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Secondary PRN Code <br> Length | - | - | 1800 | - |  |
| Data Rate | $50 \mathrm{bps} / 50 \mathrm{sps}$ | $50 \mathrm{bps} / 100 \mathrm{sps}$ | - | $50 \mathrm{bps} / 50 \mathrm{sps}$ | N/A |
| Minimum Received Power <br> [dBW] | -158.5 | -157 | -161.5 | N/A |  |
| Elevation | $5^{\circ}$ | $5^{\circ}$ | $5^{\circ}$ | $5^{\circ}$ |  |

Table 1. GPS L1 signal technical characteristics.

Of all the signals shown in Table 1, the C/A Code is the best known as most of the receivers that have been built until today are based on it. The C/A Code was open from the very beginning to all users, although until May 1, 2000, an artificial degradation was introduced by means of the Select Availability (SA) mechanism which added an intentional distortion to degrade the positioning quality of the signal to non-desired users. As we have already mentioned, the C/A Code was thought to be an aid for the $\mathrm{P}(\mathrm{Y})$ Code (to realize a Coarse Acquisition). The M-Code is the last military signal that has been introduced in GPS.

For a long time different signal structures for the MCode were under consideration [J.W. Betz, 2001] being the Manchester code signals - Binary Phase Shift Keying (BPSK) and the binary offset carrier (BOC) signals the two favored candidates. Both solutions result from the modulation of a non-return to zero (NRZ) pseudo random noise spreading code by a square-wave sub-carrier. While the Manchester code has a spreading code of rate equal to that of the square-wave, the BOC signal does not necessarily have to be so, being the only constraint that the rate of the spreading code must be less than the sub-carrier frequency.

The interesting aspect about these signals is that, like the conventional sub-carrier modulation, the waveform presents a zero at the carrier frequency due to the squarewave sub-carrier. In fact, their split-power spectra clearly facilitate the compatibility of the GPS military M-Code signal with the existing C/A Code and $\mathrm{P}(\mathrm{Y})$ Code. See Figure 1 - Spectra of GPS signals in L1.

We can clearly recognize that GPS L1C concentrates more power at higher frequencies - due to $\operatorname{BOC}(6,1)$ - in the pilot channel than in the data channel.

Finally, it is important to note that for all the figures next the commonly used expressions for bandwidths in MHz must be understood as multiplied by the factor 1.023. Thus BPSK(10) refers in reality to a BPSK signal with a chip rate of 10.23 MHz . This remains valid for all the bandwidths in this thesis, unless different stated otherwise

## App C 2. The GPS L2 Band

GPS is transmitting in the L2 band ( 1227.60 MHz ) a modernized civil signal known as L2C together with the $\mathrm{P}(\mathrm{Y})$ Code and the M-Code. The $\mathrm{P}(\mathrm{Y})$ Code and M-Code were already described shortly in the previous chapter and the properties and parameters are thus similar to those in the L1 band. In addition, for Block IIR-M, IIF, and subsequent blocks of SVs, two additional PRN ranging codes will be transmitted. They are the L2 Civil Moderate (L2 CM) code and the L2 Civil Long (L2 CL) code. These two signals are time multiplexed so that the resulting chipping rate is double as high as that of each individual signal. We further describe them in the next lines more in detail:

- L2 CM Code is transmitted in the IIR-M, IIF, and subsequent blocks. The PRN L2 CM Code for SV number i is a ranging code, $C M_{\mathrm{i}}(t)$, which is 20 milliseconds in length at a chipping rate of 511.5 Kbps. The epochs of the L2 CM Code are synchronized with the X1 epochs of the P-code. The $C M_{\mathrm{i}}(t)$ sequence is a linear pattern which is short cycled every count period of 10,230 chips by resetting with a particular initial state. Furthermore, for Block IIR-M, the navigation data is also Modulo2 added to the L2 CM Code. It is interesting to note that the navigation data can be used in one of two different data rates selectable by ground command: 1) $D(t)$ with a data rate of 50 bps , or 2 ) $D(t)$ with a symbol rate of 50 symbols per second (sps) which is obtained by encoding $\mathrm{D}(\mathrm{t})$ with a data rate of 25 bps coded in a rate $1 / 2$ convolutional code. Finally, the resultant bit-train is combined with the L2 CL Code using time-division multiplexing.
- L2 CL Code is transmitted in the IIR-M, IIF, and subsequent blocks. The PRN L2 CL Code for SV number i is a ranging code, $C L_{\mathrm{i}}(t)$, which is 1.5 seconds in length at a chipping rate of 511.5 Kbps . The epochs of the L2 CL Code are synchronized with the X 1 epochs of the P Code. The $C L_{\mathrm{i}}(t)$ sequence is a linear pattern which is generated using the same code generator polynomial as of $C M_{\mathrm{i}}(t)$. However, the $C M_{\mathrm{i}}(t)$ sequence is short cycled by resetting with an initial state every count period of 767,250 chips.


Figure 1. Spectra of GPS signals in L1. Image courtesy of Dr. Jose Angel Avila Rodriguez.


Figure 2a. Modulation scheme for the GPS L2 signals. Image courtesy of Dr. Jose Angel Avila Rodriguez.

| GNSS System | GPS | GPS | GPS | GPS |
| :---: | :---: | :---: | :---: | :---: |
| Service Name | L2 CM | L2 CL | $\mathrm{P}(\mathrm{Y})$ Code | M-Code |
| Center Frequency | 1227.60 MHz | 1227.60 MHz | 1227.60 MHz | 1227.60 MHz |
| Frequency Band | L2 | L2 | L2 | L2 |
| Access Technique | CDMA | CDMA | CDMA | CDMA |
| Spreading Modulation | BPSK(1) result of multiplexing 2 streams at 511.5 kHz |  | BPSK (10) | $\mathrm{BOC}_{\text {sin }}(10,5)$ |
| Sub-carrier Frequency [MHz] | - | - | - | 10.23 |
| Code Frequency | 511.5 kHz | 511.5 kHz | 10.23 MHz | 5.115 MHz |
| Signal Component | Data | Pilot | Data | N/A |
| Primary PRN Code Length | $\begin{gathered} 10,230 \\ (20 \mathrm{~ms}) \end{gathered}$ | $\begin{gathered} 767,250 \\ (1.5 \text { seconds }) \end{gathered}$ | $6.19 \times 10^{12}$ | N/A |
| Code Family | M-sequence from a maximal polynomial of degree 27 |  | Combo and short cycling of Msequences | N/A |
| Secondary PRN Code Length | - | - | - | N/A |
| Data Rate | IIF <br> $50 \mathrm{bps} / 50 \mathrm{sps}$ <br> IIR-M <br> Also 25 bps <br> 50 sps with FEC | - | $50 \mathrm{bps} / 50 \mathrm{sps}$ | N/A |
| Minimum Received Power [dBW] |  |  | $\begin{gathered} \text { II/IIA/IIR } \\ -164.5 \mathrm{dBW} \\ \text { IIR-M } \\ -161.4 \mathrm{dBW} \\ \text { IIF } \\ -160.0 \mathrm{dBW} \end{gathered}$ | N/A |
| Elevation |  |  | $5^{\circ}$ | $5^{\circ}$ |

Table 2. GPS L2 signal technical characteristics.

Finally, it is important to note that the GPS L2 band will have a transition period from the C/A Code to L2C and mixed configurations could occur. Figure 2a shows the baseband L2 signal generation scheme. As we can recognize, although the chipping rate of the L2 CM and L2 CL signals is of 511.5 Kbps individually, after the time multiplexing the composite signal results in a stream of 1.023 MHz .

The technical characteristics of the GPS L2 signals are summarized in Table 2 and the spectra of the different signals (L2C, P(Y) Code, and M-Code) are given in Figure 2b.

## App C 3. The GPS L5 Band

The GPS L5 (1176.45 MHz) signal will be transmitted for the first time on board IIF satellites. The GPS carriers of the L5 band are modulated by two bit trains in phase quadrature: the L5 data channel and the L5 pilot channel. Moreover, two PRN ranging codes are transmitted on L5: the in-phase code (denoted
as the I5-code) and the quadraphase code (denoted as the Q5code). The PRN L5-codes for SV number i are independent, but time synchronized ranging codes, $X_{I}^{i}(t)$ and $X_{Q}^{i}(t)$, of 1 millisecond in length at a chipping rate of 10.23 Mbps [GPS ICD-705]. For each code, the 1-millisecond sequences are the modulo-2 sum of two sub-sequences referred to as XA and XBi with lengths of 8,190 chips and 8,191 chips respectively, which restart to generate the 10,230 chip code. The XBi sequence is selectively delayed, thereby allowing the basic code generation technique to produce the different satellite codes.

See Figure 3a for the modulation scheme for the GPS L5 signals. See Figure 3b for the spectra of the GPS signals in L5. For more detail on L5, refer to (E.D. Kaplan and C. Hegarty, 2006). See Figure 3c for the technical characteristics of the GPS signal in L5.


Figure 2b. Spectra of the GPS signals in L2. Image courtesy of Dr. Jose Angel Avila Rodriguez.


Figure 3a. Modulation scheme for the GPS L5 signals. Image courtesy of Dr. Jose Angel Avila Rodriguez.


Figure 3b. Spectra of the GPS signals in L5.Image courtesy of Dr. Jose Angel Avila Rodriguez.

## THE GALILEO SIGNAL PLAN

## App C 4. Galileo E1 Open Service Band

The E1 Open Service (OS) modulation receives the name of CBOC (Composite Binary Offset Carrier) and is a particular implementation of MBOC (Multiplexed BOC) [J.-A. Avila-Rodriguez et al., 2007]. $\operatorname{MBOC}(6,1,1 / 11)$ is the result of multiplexing a wide band signal - BOC $(6,1)$ - with a narrow band signal $\operatorname{BOC}(1,1)$ - in such a way that $1 / 11$ of the power is allocated, in average, to the high frequency component. This signal was the last one to be defined.

The normalized (unit power) power spectral density, specified without the effect of band-limiting filters and payload imperfections, is given by $G_{M B O C(6,1,1 / 11)}(f)=\frac{10}{11} G_{B O C(1,1)}(f)+\frac{1}{11} G_{B O C(6,1)}(f)$.

As in [Galileo SIS ICD, 2010], the generic view of the E1 Open Service signal generation can be depicted as follows [J.-A. Avila-Rodriguez et al., 2007] in Figure 4a -

Modulation Scheme for Galileo E1 OS Signals.
The whole transmitted Galileo E1 signal consists of the multiplexing of the three following components:

The E1 Open Service Data channel $e_{E 1-B}(t)$ is generated from the I/NAV navigation data stream $D_{E 1-B}(t)$ and the ranging code $C_{E 1-B}(t)$, which are then modulated with the sub-carriers $S C_{E 1-B O C(1,1)}(t)$ and $S C_{E 1-B O C(6,1)}(t)$ of $\operatorname{BOC}(1,1)$ and $\operatorname{BOC}(6,1)$ respectively.

- The E1 Open Service Pilot channel $e_{E 1-C}(t)$ is generated from the ranging code $C_{E 1-C}(t)$, including its secondary code, which is then modulated with the sub-carriers $S C_{E 1-B O C(1,1)}(t)$ and $S C_{E 1-B O C(6,1)}(t)$ in anti-phase.
- The E1 PRS channel, also denoted as E1-A, which results from the modulo-two addition (respectively product if we consider the physical bipolar represen-

| GNSS System | GPS | GPS |
| :---: | :---: | :---: |
| Service Name | L5I | L5Q |
| Center Frequency | 1176.45 MHz | 1176.45 MHz |
| Frequency Band | L5 | L5 |
| Access Technique | CDMA | CDMA |
| Spreading Modulation | $\operatorname{BPSK}(10)$ | $\operatorname{BPSK}(10)$ |
| Sub-carrier Frequency <br> [MHz] | - | - |
| Code Frequency | 10.23 MHz | 10.23 MHz |
| Signal Component | Data | Pilot |
| Primary PRN Code Length | 10,230 | 10230 |
| Code Family | Combination and short-cycling of M sequences |  |
| Secondary PRN Code Length | 10 | 20 |
| Data Rate | $50 \mathrm{bps} / 100 \mathrm{sps}$ | - |
| Minimum Received Power [dBW] | -157.9 dBW | -157.9 dBW |
| Elevation | $5^{\circ}$ | $5^{\circ}$ |

Figure 3c. GPS L5 signal technical characteristics.


Figure 4a. Modulation scheme for Galileo E1 OS signals. Image courtesy of Dr. Jose Angel Avila Rodriguez.


Figure 4b. Spectra of Galileo signals in E1. Image courtesy of Dr. Jose Angel Avila Rodriguez.


Figure 4c. Spectra of GPS and Galileo signals in L1. Image courtesy of Dr. Jose Angel Avila Rodriguez.
tation of the signal) of the PRS data stream $D_{P R S}(t)$, the PRS sequence $C_{P R S}(t)$ and the sub-carriers $S C_{P R S}(t)$. This sub-carrier consists of a BOC $(15,2.5)$ in cosine phasing.
See Figure 4b for the Spectra of Galileo Signals in E1 and Figure 4c for the Spectra of both GPS and Galileo Signals in L1.

It is important to recall that for a long time the actual E1 band received the name of L1 band in analogy with GPS and it was not until the publication of the [Galileo SIS ICD,

2008] that L1 changed to the current E1.
The E1 Open Service (OS) codes are, as well as the E6 CS codes that we will see later, also random memory codes. The plain number of choices to set the 0's and 1's for the whole code family is enormous and thus special algorithms have to be applied to generate random codes efficiently [J.-A. Avila-Rodriguez et al., 2007].

Finally, the technical characteristics of all the Galileo signals in E1 are summarized in Table 4.

| GNSS System | Galileo | Galileo | Galileo |
| :---: | :---: | :---: | :---: |
| Service Name | E1 OS |  | PRS |
| Center Frequency | 1575.42 MHz |  |  |
| Frequency Band | E1 |  |  |
| Access Technique | CDMA |  |  |
| Spreading modulation | CBOC(6,1,1/11) |  | $\mathrm{BOC}_{\text {cos }}(15,2.5)$ |
| Sub-carrier Frequency | 1.023 MHz and 6.138 MHz (two sub-carriers) |  | 15.345 MHz |
| Code Frequency | 1.023 MHz |  | 2.5575 MHz |
| Signal Component | Data | Pilot | Data |
| Primary PRN Code Length | 4092 |  | N/A |
| Code Family | Random Codes |  | N/A |
| Secondary PRN Code Length | - | 25 | N/A |
| Data Rate | 250 sps | - | N/A |
| Minimum Received Power [dBW] | -157 dBW |  | N/A |
| Elevation | $10^{\circ}$ |  | N/A |

Table 4. Galileo E1 signal technical characteristics.

## App C 5. Galileo E6 Band

As shown in [Galileo SIS ICD, 2010], the transmitted Galileo E6 signal consists of the following three components:

- The E6 Commercial Service (CS) data channel: this modulating signal is the modulo-two addition of the E6 CS navigation data stream $D_{C S}(t)$ with the CS data channel code sequence $D_{C S}^{D}(t)$. This last one is already modulated by a BPSK(5) at 5.115 MHz .
- The E6 Commercial Service (CS) pilot channel: this modulating signal is the modulo-two addition of the

E6 CS pilot channel code $C_{C S}^{P}(t)$ with a $\operatorname{BPSK}(5)$ at 5.115 MHz.

- Finally, the E6 PRS channel is the modulo-two addition of the E6 PRS navigation data stream $D_{P R S}(t)$ with the PRS channel code sequence $C_{P R S}(t)$ at 5.115 MHz . This signal is further modulated by a sub-carrier of 10.23 MHz in cosine phasing.
This is graphically shown in Figure 5a - Modulation Scheme for the Galileo E6 Signals and Figure 5b-Spectra of Galileo signals in E6. Table 5 provides the technical characteristics of the Galileo E6 signal.


Figure 5a. Modulation scheme for Galileo E6 signals. Image courtesy of Dr. Jose Angel Avila Rodriguez.


Figure 5b. Spectra of Galileo E6 signals. Image courtesy of Dr. Jose Angel Avila Rodriguez.

The E6 Commercial Service (CS) codes are random codes [J. Winkel, 2006]. The main idea behind is to generate a family of codes that fulfills the properties of randomness as well as possible [J.-A. Avila-Rodriguez et al., 2007]. The codes can be driven to fulfill special properties such as balance and weakened balance, where
the probability of 0 's and 1 's must not be identical but within a well-defined range, or to realize the autocorrelation side-lobe zero (ASZ) property. This latter property guarantees that the autocorrelation values of every code correlate to zero with a delayed version of itself, shifted by one chip.

| GNSS System | Galileo | Galileo | Galileo |
| :---: | :---: | :---: | :---: |
| Service Name | E6 CS data | E6 CS pilot | E6 PRS |
| Center Frequency | 1278.75 MHz |  |  |
| Frequency Band | E6 |  |  |
| Access Technique | CDMA |  |  |
| Spreading modulation | BPSK(5) | BPSK(5) | $\mathrm{BOC}_{\mathrm{cos}}(10.5)$ |
| Sub-carrier Frequency | - | - | 10.23 MHz |
| Code Frequency | 5.115 MHz |  |  |
| Signal Component | Data | Pilot | Data |
| Primary PRN Code Length | 5115 | 5115 | N/A |
| Code Family | Memory codes |  | N/A |
| Secondary PRN Code Length | - | 100 | N/A |
| Data Rate | 1000 sps | - | N/A |
| Minimum Received Power [dBW] | -155 dBW |  | N/A |
| Elevation | $10^{\circ}$ |  | N/A |

Table 5. Galileo E6 signal technical characteristics.

## App C 6. Galileo E5 Band

The different Galileo E5 signal components are generated according to the following [Galileo SIS ICD, 2010]:

- The E5a data channel: This channel is the modulotwo addition of the E5a navigation data stream $D_{E 5 a}(t)$ with the E5a data channel PRN code sequence $C_{E 5 a}^{D}(t)$ of chipping rate 10.23 MHz .
- The E5a pilot channel: This channel is the E5a pilot channel PRN code sequence $C_{E 5 a}^{P}(t)$ of chipping rate 10.23 MHz .
- The E5b data channel: This channel is the modulotwo addition of the E5b navigation data stream $D_{E 5 b}(t)$ with the PRS channel code sequence
$C_{P R S}(t)$ with the E5b data channel PRN code sequence $C_{E 5 b}^{D}(t)$ of chipping rate 10.23 MHz .
- The E5b pilot channel: This channel is the E5b pilot channel PRN code sequence $C_{E 5 b}^{P}(t)$ of chipping rate 10.23 MHz .
The E5 modulation receives the name of AltBOC and is a modified version of a Binary Offset Carrier (BOC) with code rate of 10.23 MHz and a sub-carrier frequency of 15.345 MHz . $\operatorname{AltBOC}(15,10)$ is a wideband signal that is transmitted at 1191.795 MHz. Figure 7a shows the Galileo E5 signal modulation diagram.

The power spectral density for the modified Alt$\operatorname{BOC}(15,10)$ modulation with constant envelope is shown to adopt the form in Figure 6a.

$$
G_{\mathrm{AlBOC}}(f)=\frac{4 f_{c}}{\pi^{2} f^{2} \cos ^{2}\left(\frac{\pi f}{2 f_{z}}\right)}\left[\cos ^{2}\left(\frac{\pi f}{f_{c}}\right) . \cos \left(\frac{\pi f}{2 f_{z}}\right)-2 \cos \left(\frac{\pi f}{2 f_{z}}\right) \cos \left(\frac{\pi f}{4 f_{z}}\right)+2\right]
$$

Figure 6a. Equation for the power spectral density of the modified AltBOC $(15,10)$.


Figure 7a. Modulation scheme for Galileo E5 signals. Image courtesy of Dr. Jose Angel Avila Rodriguez.

The spectrum of the E5 signal modulation is shown in Figure 7b.

As we can recognize from both figures, the Alt$\operatorname{BOC}(15,10)$ modulation is very similar to two $\operatorname{BPSK}(10)$ signals shifted by 15 MHz to the left and right of the carrier frequency. Indeed, since to acquire all the main lobes of the modulation a very wide bandwidth is necessary, many receivers will operate correlating the AltBOC signal with a BPSK(10) replica.

To have a better feeling about the overlapping between

GPS and Galileo in E5, Figure 7c shows all the signals described so far for this band.

The E5 primary codes can be generated with shift registers. Indeed, the outputs of two parallel registers are modulotwo added to generate the primary codes. For more details on the start values of the primary codes and the corresponding secondary codes of each satellite, refer to [Galileo SIS ICD, 2010]. Finally, some details on the technical characteristics of the E5 signal are presented in Table 7.

## THE GLONASS SIGNAL PLAN

## App C 7. GLONASS Signal Coding

GLONASS, unlike the other GNSS systems, makes use of a different DSSS technique [G.W. Hein et al., 2006c] based on Frequency Division Multiple Access (FDMA) to transmit its ranging signals.

GLONASS uses FDMA in both the L1 and L2 subbands. According to this scheme, each satellite transmits navigation signals on its own carrier frequency, so that two GLONASS satellites may transmit navigation signals on the same carrier frequency if they are located in antipodal slots of a single orbital plane [GLONASS ICD, 2002]. Indeed the actual constellation is taking advantage of this property since 2005 when the higher frequency channels had to be turned off to fulfill the CCIR Recommendation 769. We can clearly see this if we have a look at the satellites assigned to each of the GLONASS planes as shown in the following figure with status as of May 2008. As is clear to see, antipodal satellites are transmitting at the same frequency.

See Figure 8 for a depiction of the three GLONASS orbital planes.The red slots indicate that the satellite is in maintenance. Blue means correct operation. Moreover, two different types of signals [GLONASS ICD, 2002] are transmitted by GLONASS satellites: Standard Precision (SP) and High Precision (HP) in both the L1 and L2 bands. The GLONASS standard accuracy signal, also known as C/A Code, has a clock rate of 0.511 MHz and is designed for use by civil users worldwide while the high accuracy signal ( P Code) has a clock rate of 5.11 MHz and is modulated by a special code which is only available to users authorized by the Ministry of Defense. Since GLONASS-M, both L1 and L2 provide users with the standard accuracy code C/A. Moreover, the modernized GLONASS will also transmit FDMA signals on the L3 band and CDMA signals in L1 and L5.

The nominal values of the FDMA L1, L2 and L3 carrier frequencies are defined as:


Figure 7b. Spectra of Galileo signals in E5. Image courtesy of Dr. Jose Angel Avila Rodriguez.

$$
\begin{gather*}
f_{k L 1}=f_{0 L 1}+k \Delta f_{L 1} \\
f_{k L 2}=f_{0 L 2}+k \Delta f_{L 2}  \tag{1}\\
f_{k L 3}=f_{0 L 3}+k \Delta f_{L 3}
\end{gather*}
$$

where:
$k$ represents the frequency channel,
$f_{0 L 1}=1602 \mathrm{MHz}$ for the GLONASS L1 band,
$\Delta f_{L 1}=562.5 \mathrm{kHz}$ frequency separation between
GLONASS carriers in the L1 band,
$f_{0 L 2}=1246 \mathrm{MHz}$ for the GLONASS L2 band,
$\Delta f_{L 2}=437.5 \mathrm{kHz}$ frequency separation between
GLONASS carriers in the L2 band,
$f_{0 L 3}=1201 \mathrm{MHz}$ for the GLONASS L3 band, and
$\Delta f_{L 3}=437.5 \mathrm{kHz}$ frequency separation between
GLONASS carriers in the L3 band.

As we can see, the GLONASS L2 carrier reference signal is $7 / 9$ of the L1 carrier reference and the GLONASS L3 carrier reference is $3 / 4$ of the L1 carrier reference. Moreover, it must be noted that until 2005 the GLONASS satellites used the frequency channels $\mathrm{k}=0, \ldots, 12$ without
any restrictions and the channel numbers $\mathrm{k}=0$ and 13 for technical purposes.

Since then GLONASS is only using the frequency channels $\mathrm{k}=-7, \ldots,+6$ and all the satellites launched beyond that year will use filters, limiting out-of-band emissions to the harmful interference limit contained in CCIR-ITU Recommendation 769 for the $1610.6-1613.8 \mathrm{MHz}$ and $1660-$ 1670 MHz Radio-Astronomy bands. It is interesting to note that although the limitation to use the higher frequency channels does only affect the L1 band, since the parameter k determines the channel in both the L1 and L2 bands, the upper frequencies of L2 corresponding to channels +7 to +13 were automatically sacrificed.

To have a clearer insight into how the spectra of the GLONASS signals look like, we study next all the bands in detail.

## App C 8. GLONASS L1 Band and Signal Structure

The transmitted navigation signal is in both services of L1 a bipolar phase-shift key (BPSK) waveform with clock rates of 0.511 and 5.11 MHz for the standard and accuracy signals respectively. The L1 signal is modulated by the Modulo-2 addition of the pseudo random (PR) ranging code, the digital data of the navigation message and an


Figure 7c. Spectra of GPS and Galileo Signals in E5.Image courtesy of Dr. Jose Angel Avila Rodriguez.

| GNSS System | Galileo | Galileo | Galileo | Galileo |
| :---: | :---: | :---: | :---: | :---: |
| Service Name | E5a data | E5a pilot | E5a data | E5b pilot |
| Center Frequency | 1191.795 MHz |  |  |  |
| Frequency Band | E5 |  |  |  |
| Access Technique | CDMA |  |  |  |
| Spreading modulation | $\operatorname{AltBOC}(15,10)$ |  |  |  |
| Sub-carrier Frequency | 15.345 MHz |  |  |  |
| Code Frequency | 10.23 MHz |  |  |  |
| Signal Component | Data | Pilot | Data | Pilot |
| Primary PRN Code Length | 10230 |  |  |  |
| Code Family | Combination and short-cycling of M-sequences |  |  |  |
| Secondary PRN Code Length | 20 | 100 | 4 | 100 |
| Data Rate | 50 sps | - | 250 sps | - |
| Minimum Received Power [dBW] | -155 dBW |  | -155 dBW |  |
| Elevation | $10^{\circ}$ |  | $10^{\circ}$ |  |

Table 7. Galileo E5 signal technical characteristics.


Figure 8. Antipodal assignment of GLONASS satellites. The parameter $i(k)$ indicates that the satellite in almanac slot $i$ transmits on frequency number k. Image courtesy of Dr. Jose Angel Avila Rodriguez.
auxiliary meander sequence. All above-mentioned frequencies are generated coherently using a single onboard time/frequency oscillator standard [GLONASS ICD, 2002]. For the case of the standard accuracy signals (C/A), the PR ranging code is a sequence with length the maximum of a shift register ( m -sequence) and a period of 1 millisecond with bit rate of 511 kbps . The navigation message is sent at 50 bps and the auxiliary meander sequence at 100 Hz .

Moreover, it is important to note that the GLONASS FDMA L1 band does not exactly coincide with the GPS and Galileo L1 band. In fact, the GLONASS L1 band ranges from 1592.9525 MHz to 1610.485 MHz when only the 14 channels $\mathrm{k}=-7 \ldots+6$ are employed. In the next figures, each of the channels was filtered to only transmit the main lobe of the BPSK signal and the PSD was normalized to have unit power within the corresponding transmission bandwidth.

The PSDs of the GLONASS signals are shown in Figure 9a:

Once again, in order to have a clearer picture of how overcrowded the RNSS bands are becoming as more and more countries claim their rights to have their own GNSS, Figure 9b hows GPS, Galileo and GLONASS signals in the E1/L1 band.

It is important to note that the GPS L1C pilot and data signals are shown in quadrature in Figure 9b although according to [GPS ICD-800, 2006] the final phasing is still open. To finalize some details on the technical characteristics of the GLONASS L1 signals are presented Table 9:

It is important to note that unlike for the case of

GPS and Galileo, the frequencies do not have to be multiplied by the factor 1.023 .

## App C 9. GLONASS L2 Band and Signal Structure

The transmitted navigation signal is, as also in L1, a bipolar phase-shift key (BPSK) waveform with similar clock rates as in the L1 band. The L2 signal is modulated by the Modulo-2 addition of the PR ranging code and the auxiliary meander sequence. For the case of the standard accuracy signals (C/A), the PR ranging code is a sequence of the maximum length of a shift register (M-sequence) with a period of 1 millisecond and a bit rate of 511 kbps . The navigation message is sent at 50 bps and the auxiliary meander at 100 Hz .

Figure 10a shows the spectra of the GLONASS signals in L2 and Figure 10b shows spectra of both the GLONASS and GPS signals in L2.

Details on the technical characteristics of the GLONASS L2 signals are presented in Table 10.

It is important to note again that unlike for the case of GPS and Galileo in the previous chapters, the frequencies do not have to be multiplied by the factor 1.023 .

## App C 10. References

Ávila Rodríguez, José Ángel. (2008). On Generalized Signal Waveforms for Satellite Navigation. University FAF, Munich. Sections reproduced with permission.


Figure 9a. Spectra of GLONASS signals in L1. Image courtesy of Dr. Jose Angel Avila Rodriguez.


Figure 9b. Spectra of GPS, Galileo and GLONASS signals in E1/L1. Image courtesy of Dr. Jose Angel Avila Rodriguez.

| GNSS System | GLONASS | GLONASS |
| :---: | :---: | :---: |
| Service Name | C/A Code | P Code |
| Center Frequency | (1598.0625-1605.375) MHz [+ or -] 0.511 MHz |  |
| Frequency Band | L1 | L1 |
| Access Technique | FDMA | FDMA |
| Spreading modulation | $\operatorname{BPSK}(0.511)$ | $\operatorname{BPSK}(5.11)$ |
| Sub-carrier Frequency | - | - |
| Code Frequency | 0.511 MHz | 5.11 MHz |
| Signal Component | Data | Pilot |
| Primary PRN Code Length | 511 | N/A |
| Code Family | M-sequences | N/A |
| Meander sequence | 100 Hz | N/A |
| Data Rate | 50 bps | N/A |
| Minimum Received Power [dBW] | -161 dBW | N/A |
| Elevation | $5^{\circ}$ | N/A |

Table 9. GLONASS L1 signal technical characteristics.


Figure 10a. Spectra of GLONASS signals in L2. Image courtesy of Dr. Jose Angel Avila Rodriguez.


Figure 10b. Spectra of GPS and GLONASS signals in L2. Image courtesy of Dr. Jose Angel Avila Rodriguez.

| GNSS System | GLONASS | GLONASS |
| :---: | :---: | :---: |
| Service Name | C/A Code | P Code |
| Center Frequency | $(1242.9375-1248.625) \mathrm{MHz}$ [+ or -] 0.511 MHz |  |
| Frequency Band | L2 | L2 |
| Access Technique | FDMA | FDMA |
| Spreading modulation | BPSK(0.511) | BPSK(5.11) |
| Sub-carrier Frequency | - | Nilot |
| Code Frequency | 0.511 MHz | N/A |
| Signal Component | Data | NHHz |
| Primary PRN Code | 511 | Nength |

Table 10. GLONASS L2 signal technical characteristics.


Figure 10b. Schematic image of the next generation GPS III satellite built by Lockheed Martin

