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CHAPTER 1 

MATHEMATICS 

ARITHMETIC

100. Definition

Arithmetic is that branch of mathematics dealing with 
computation by numbers. The principal processes involved 
are addition, subtraction, multiplication, and division. A 
number consisting of a single symbol (1, 2, 3, etc.) is a 
digit. Any number that can be stated or indicated, however 
large or small, is called a finite number; one too large to be 
stated or indicated is called an infinite number; and one 
too small to be stated or indicated is called an infinitesimal 
number.

The sign of a number is the indication of whether it is 
positive (+) or negative (-). This may sometimes be indi-
cated in another way. Thus, latitude is usually indicated as 
north (N) or south (S), but if north is considered positive, 
south is then negative with respect to north. In navigation, 
the north or south designation of latitude and declination 
is often called the “name” of the latitude or declination. A 
positive number is one having a positive sign (+); a neg-
ative number is one having a negative sign (-). The 
absolute value of a number is that number without regard 
to sign. Thus, the absolute value of both (+) 8 and (-) 8 is 
8. Generally, a number without a sign can be considered
positive. 

101. Significant Digits

Significant digits are those digits of a number which 
have a significance. Zeros at the left of the number and 
sometimes those at the right are excluded. Thus, 1,325, 
1,001, 1.408, 0.00005926, 625.0, and 0.4009 have four sig-
nificant digits each. But in the number 186,000 there may 
be three, four, five, or six significant digits depending upon 
the accuracy with which the number has been determined. 
If the quantity has only been determined to the nearest thou-
sand then there are three significant digits, the zeros at the 
right not being counted. If the number has been determined 
to the nearest one hundred, there are four significant digits, 
the first zero at the right being counted. If the number has 
been determined to the nearest ten, there are five significant 
digits, the first two zeros on the right being counted. If the 
quantity has been determined to the nearest unit, there are 
six significant digits, the three zeros at the right being 
counted. 

This ambiguity is sometimes avoided by expressing 

numbers in powers of 10. Thus, (18.6 x 10,000) in-

dicates accuracy to the nearest thousand,  to the

nearest hundred, to the nearest ten, and

to the nearest unit. The position of the decimal 
is not important if the correct power of 10 is given. For ex-

ample,  is the same as , , etc. The 
small number above and to the right of 10 (the exponent) 
indicates the number of places the decimal point is to be 
moved to the right. If the exponent is negative, it indicates 
a reciprocal, and the decimal point is moved to the left. 
Thus, is the same as 0.00000186. This system is 
called scientific notation.

102. Expressing Numbers

In navigation, fractions are usually expressed as deci-
mals. Thus,  is expressed as 0.25 and  as 0.33. To 
determine the decimal equivalent of a fraction, divide the 
numerator (the number above the line) by the denomina-
tor (the number below the line). When a decimal is less 
than 1, as in the examples above, it is good practice to show 
the zero at the left of the decimal point (0.25, not .25). 

A number should not be expressed using more 
significant digits than justified. The implied accuracy of a 
decimal is indicated by the number of digits shown to the 
right of the decimal point. Thus, the expression “14 miles” 
implies accuracy to the nearest whole mile, or any value 
between 13.5 and 14.5 miles. The expression “14.0 miles” 
implies accuracy of a tenth of a mile, or any value between 
13.95 and 14.05 miles.

A quantity may be expressed to a greater implied accu-
racy than is justified by the accuracy of the information 
from which the quantity is derived. For instance, if a ship 

steams 1 mile in 3m21s, its speed is 60m÷3m21s= 60÷3.35= 
17.910447761194 knots, approximately. The division can 
be carried to as many places as desired, but if the time is 
measured only to the nearest second, the speed is accurate 
only to one decimal place in this example, because an error 
of 0.5 second introduces an error of more than 0.05 knot in 
the speed. Hence, the additional places are meaningless and 
possibly misleading, unless more accurate time is available. 
In general, it is not good practice to state a quantity to imply 
accuracy greater than what is justified. However, in marine 
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navigation the accuracy of information is often unknown, 
and it is customary to give positions as if they were accurate 
to 0.1' of latitude and longitude, although they may not be 
accurate even to the nearest whole minute.

If there are no more significant digits, regardless of how 
far a computation is carried, this may be indicated by use of 
the word “exactly.” Thus, 12÷4=3 exactly and 1 nautical 
mile = 1,852 meters exactly; but 12÷7=1.7 approximately, 
the word “approximately” indicating that additional decimal 
places might be computed. Another way of indicating an ap-
proximate relationship is by placing a positive or negative 
sign after the number. Thus, 12÷7=1.7+, and 11÷7=1.6-. 
This system has the advantage of showing whether the ap-
proximation is too great or too small.

In any arithmetical computation the answer is no more 
accurate than the least accurate value used. Thus, if it is de-
sired to add 16.4 and 1.88, the answer might be given as 
18.28, but since the first term might be anything from 16.35 
to 16.45; the answer is anything from 18.23 to 18.33. 
Hence, to retain the second decimal place in the answer is 
to give a false indication of accuracy, for the number 18.28 
indicates a value between 18.275 and 18.285. However, ad-
ditional places are sometimes retained until the end of a 
computation to avoid an accumulation of small errors due 
to rounding off. In marine navigation it is customary to give 
most values to an accuracy of 0.1, even though some uncer-
tainty may exist as to the accuracy of the last place. 
Examples are the dip and refraction corrections of sextant 
altitudes.

In general, a value obtained by interpolation in a table 
should not be expressed to more decimal places than given 
in the table.

Unless all numbers are exact, doubt exists as to the ac-
curacy of the last digit in a computation. Thus, 
12.3+9.4+4.6=26.3. But if the three terms to be added have 
been rounded off from 12.26, 9.38, and 4.57, the correct an-
swer is 26.2, obtained by rounding off the answer of 26.21 
found by retaining the second decimal place until the end. 
It is good practice to work with one more place than needed 
in the answer, when the information is available. In compu-
tations involving a large number of terms, or if greater 
accuracy is desired, it is sometimes advisable to retain two 
or more additional places until the end.

103. Rounding Off

In rounding off numbers to the number of places de-
sired, one should take the nearest value. Thus, the number 
6.5049 is rounded to 6.505, 6.50, 6.5, or 7, depending upon 
the number of places desired. If the number to be rounded 
off ends in 5, the nearer even number is taken. Thus, 1.55 
and 1.65 are both rounded to 1.6. Likewise, 12.750 is 
rounded to 12.8 if only one decimal place is desired. How-

ever, 12.749 is rounded to 12.7. That is, 12.749 is not first 
rounded to 12.75 and then to 12.8, but the entire number is 
rounded in one operation. When a number ends in 5, the 
computation can sometimes be carried to additional places 
to determine whether the correct value is more or less than 
5.

104. Reciprocals

The reciprocal of a number is 1 divided by that num-
ber. The reciprocal of a fraction is obtained by interchanging 
the numerator and denominator. Thus, the reciprocal of 
is . A whole number may be considered a fraction with 
1 as the denominator. Thus, 54 is the same as , and its 
reciprocal is . Division by a number produces the same 
result as multiplying by its reciprocal, or vice versa. Thus, 
12÷2=12× =6, and 12×2=12÷ =24. 

105. Addition

When two or more numbers are to be added, it is gen-
erally most convenient to write them in a column, with the 
decimal points in line. Thus, if 31.2, 0.8874, and 168.14 are 
to be added, this may be indicated by means of the addition 
sign (+): 31.2+0.8874+168.14=200.2. But the addition can 
be performed more conveniently by arranging the numbers 
as follows:

The answer is given only to the first decimal place, be-
cause the answer is no more accurate than the least precise 
number among those to be added, as indicated previously. 
Often it is preferable to state all numbers in a problem to the 
same precision before starting the addition, although this 
may introduce a small error:

If there are no decimals, the last digit to the right is 
aligned:

Numbers to be added should be given to the same ab-
solute accuracy, when available, to avoid a false impression 
of accuracy in the result. Consider the following:
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The answer would imply accuracy to six places. If the 
first number given is accurate to only three places, or to the 
nearest 1,000, the answer is not more accurate, and hence 
the answer should be given as 268,000. Approximately the 
same answer would be obtained by rounding off at the start:

If numbers are added arithmetically, their absolute 
values are added without regard to signs; but if they are 
added algebraically, due regard is given to signs. If two 
numbers to be added algebraically have the same sign, their 
absolute values are added and given their common sign. If 
two numbers to be added algebraically have unlike signs, 
the smaller absolute value is subtracted from the larger, and 
the sign of the value having the larger absolute value is giv-
en to the result. Thus, if +8 and -7 are added arithmetically, 
the answer is 15, but if they are added algebraically, the an-
swer is + 1.

An answer obtained by addition is called a sum.

106. Subtraction

Subtraction is the inverse of addition. Stated differ-
ently, the addition of a negative number is the same as the 
subtraction of a positive number. That is, if a number is to 
be subtracted from another, the sign (+ or -) of the subtra-
hend (the number to be subtracted) is reversed and the 
result added algebraically to the minuend (the number 
from which the subtrahend is to be subtracted). Thus, 6-
4=2. This may be written +6-(+4)=+2, which yields the 
same result as +6+ (-4). For solution, larger numbers are of-
ten conveniently arranged in a column with decimal points 
in a vertical column, as in addition. Thus, 3,728.41-
1,861.16 may be written:

(+)3,728.41
(+)1,861.16 (subtract)
(+)1,867.25

This is the same as:

(+)3,728.41
(-)1,861.16 (add algebraically)
(+)1,867.25

The rule of sign reversal applies likewise to negative 
numbers. Thus, if -3 is to be subtracted from +5, this may 
be written +5- (-3) =5+3=8. In the algebraic addition of two 
numbers of opposite sign (numerical subtraction), the 
smaller number is subtracted from the larger and the result 
is given the sign of the larger number. Thus, +7 -4= +3, and 
-7 +4= -3, which is the same as +4 -7=-3.

In navigation, numbers to be numerically subtracted 
are usually marked (-), and those to be numerically added 
are marked (+) or the sign is not indicated. However, when 
a sign is part of a designation, and the reverse process is to 
be used, the word “reversed” (rev.) is written after the num-
ber. Thus, if GMT is known and ZT in the (+) 5 zone is to 
be found (by subtraction), the problem may be written:

The symbol ~ indicates that an absolute difference is 
required without regard to sign of the answer. Thus, 
28~13=15, and 13~28=15. In both of these solutions 13 and 
28 are positive and 15 is an absolute value without sign. If 
the signs or names of both numbers are the same, either pos-
itive or negative, the smaller is subtracted from the larger, 
but if they are of opposite sign or name, they are numerical-
ly added. Thus, (+)16~(+)21=5 and (-)16~(-)21=5, but 
(+)16~ (-)21=37 and (-)16~(+)21 =37. Similarly, the differ-
ence of latitude between 15°N and 20°N, or between 15°S 
and 20°S, is 5°, but the difference of latitude between 15°N 
and 20°S, or between15°S and 20°N, is 35°. If motion from 
one latitude to another is involved, the difference may be 
given a sign to indicate the direction of travel, or the loca-
tion of one place with respect to another. Thus, if B is 50 
miles west of A, and C is 125 miles west of A, B and C are 
75 miles apart regardless of the direction of travel. Howev-
er, B is 75 miles east of C, and C is 75 miles west of B. 
When direction is indicated, an algebraic difference is giv-
en, rather than an absolute difference, and the symbol ~ is 
not appropriate.

It is sometimes desirable to consider all addition and 
subtraction problems as addition, with negative signs (-) 
given before those numbers to be subtracted; so that there 
can be no question of which process is intended. The words 
“add” and “subtract” may be used instead of signs. In navi-
gation, “names” (usually north, south, east, and west) are 
often used, and the relationship involved in a certain prob-
lem may need to be understood to determine whether to add 
or subtract. Thus, LHA=GHA- (west) and LHA=GHA+ 

(east). This is the same as saying LHA=GHA-  if west 
longitude is considered positive, for in this case, 
LHA=GHA-(- ) or LHA=GHA+  in east longitude, the 
same as before.

If numbers are subtracted arithmetically, they are 
subtracted without regard to sign; but if they are subtracted 
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algebraically, positive (+) numbers are subtracted and 
negative (-) numbers are added.

An answer obtained by subtraction is called a 
difference.

107. Multiplication

Multiplication may be indicated by the multiplication 
sign (×), as 154×28=4,312. For solution, the problem is 
conveniently arranged thus:

Either number may be given first, but it is generally 
more convenient to perform the multiplication if the larger 
number is placed on top, as shown. In this problem, 154 is 
first multiplied by 8 and then by 2. The second answer is 
placed under the first, but set one place to the left, so that 
the right-hand digit is directly below the 2 of the multiplier. 
These steps might be reversed, multiplication by 2 being 
performed first. This procedure is sometimes used in 
estimating.

When one number is placed below another for multi-
plication, as shown above, it is usually best to align the 
right-hand digits without regard for the position of the dec-
imal point. The number of decimal places in the answer is 
the sum of the decimal places in the multiplicand (the 
number to be multiplied) and the multiplier (the second 
number):

However, when a number ends in one or more zeros, 
these may be ignored until the end and then added on to the 
number:

This is also true if both multiplicand and multiplier end 
in zeros:

When negative values are to be multiplied, the sign of 
the answer is positive if an even number of negative signs 
appear, and negative if there are an odd number. Thus, 
2×3=6, 2×(-3)=-6, -2×3=-6, -2× (-3)=(+)6. Also, 2×3×8× (-
2)×5=-480, 2×(-3)×8×(-2)×5=480, 2×(-3)×(-8)×(-2) ×5=-
480, 2×(-3)×(-8)×(-2)×(-5)=480, and (-2)×(-3)×(-8)×(-
2)×(-5)=-480.

An answer obtained by multiplication is called a prod-
uct. Any number multiplied by 1 is the number itself. Thus, 
125×1=125. Any number multiplied by 0 is 0. Thus, 
125×0=0 and l×0=0.

To multiply a number by itself is to square the number. 
This may be indicated by the exponent 2 placed to the right 
of the number and above the line as a superior. Thus, 

15×15 may be written . Similarly, 15×I5×I5= , and 

15×15×15×15= , etc. The exponent (2, 3, 4, etc.) indi-
cates the power to which a number is to be raised, or how 
many times the number is to be used in multiplication. The 

expression  is usually read “15 squared”,  is read 

“15 cubed” or “15 to the third power,”  (or higher pow-
er) is read “15 to the fourth (or higher) power.” The answer 
obtained by raising to a power is called the “square,” 
“cube” etc., or the ... “power” of the number. Thus, 225 is 
the “square of 15”, 3,375 is the “cube of 15” or the “third 
power of 15,” etc. The zero power of any number except 
zero (if zero is considered a number) is 1. The zero power 

of zero is zero. Thus, =1 and =0.

Parentheses may be used to eliminate doubt as to what 
part of an expression is to be raised to a power. Thus, -32 
may mean either -(3×3)=-9 or -3×-3=(+)9. To remove the 
ambiguity, the expression may be written -(3)2 if the first 

meaning is intended, and  if the second meaning is 
intended. 

108. Division

Division is the inverse of multiplication. It may be indi-
cated by the division sign (÷), as 376÷21=18 approximately; 
or by placing the number to be divided, called the dividend
(376), over the other number, called the divisor (21), as 

=18 approximately. The expression  may be written 

376/21 with the same meaning. Such a problem is conve-
niently arranged for solution as follows:
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Since the remainder is 19, or more than half of the di-
visor (21), the answer is 18 to the nearest whole number.

An answer obtained by division is called a quotient. 
Any number divided by 1 is the number itself. Thus, 
65÷1=65. A number cannot be divided by 0.

If the numbers involved are accurate only to the num-
ber of places given, the answer should not be carried to 
additional places. However, if the numbers are exact, the 
answer might be carried to as many decimal places as de-
sired. Thus, 374÷21 =17.809523809523809523809523. . . 
When a series of digits repeat themselves with the same re-
mainder, as 809523 (with remainder 17) in the example 
given above, an exact answer will not be obtained regard-
less of the number of places to which the division is carried. 
The series of dots ( ... ) indicates a repeating decimal. In a 
non-repeating decimal, a plus sign (+) may be given to in-
dicate a remainder, and a minus sign (-) to indicate that the 
last digit has been rounded to the next higher value. Thus, 
18.68761 may be written 18.6876+ or 18.688-. If the last 
digit given is rounded off, the word “approximately” may 
be used instead of dots or a plus or minus sign.

If the divisor is a whole number, the decimal point in 
the quotient is directly above that of the dividend when the 
work form shown above is used. Thus, in the example given 
above, if the dividend had been 37.6 instead of 376, the 
quotient would have been 1.8 approximately. If the divisor 
is a decimal, both it and the dividend are multiplied by the 
power of 10 having an exponent equal to the number of dec-
imal places in the divisor, and the division is then carried 
out as explained above. Thus, if there are two decimal plac-
es in the divisor, both divisor and dividend are multiplied 

by = 100. This is done by moving the decimal to the 
right until the divisor is a whole number. If necessary, zeros 
are added to the dividend. Thus, if 3.7 is to be divided by 

2.11, both quantities are first multiplied by , and 370 is 
divided by 211. This is usually performed as follows: 

If both the dividend and divisor are positive, or if both
are negative, the quotient is positive; but if either is nega-
tive, the quotient is negative. Thus, 6÷3=2, (- 6)÷(-3)=+2, 
(-6)÷3=-2, and 6÷(-3)=-2.

The square root of a number is that number which, 
multiplied by itself, equals the given number. Thus, 

15×15= =225, and = =15. The square root 

symbol  is called the radical sign, or the exponent ½ in-

dicates square root. Also,  or 1/3 as an exponent, 
indicates cube root. Fourth, fifth, or any root is indicated 
similarly, using the appropriate number. Nearly any arith-
metic book explains the process of extracting roots, but this 
process is most easily performed by table, logarithms, or 
calculator. If no other means are available, it can be done by 
trial and error. The process of finding a root of a number is 
called extracting a root. 

109. Logarithms

Though rarely used today, logarithms (“logs”) pro-
vide an easy way to multiply, divide, raise numbers to 
powers, and extract roots. The logarithm of a number is the 
power to which a fixed number, called the base, must be 
raised to produce the value to which the logarithm corre-
sponds. The base of common logarithm, (given in tables 1 

and 3) is 10. Hence, since =63 approximately, 1.8 is 
the logarithm, approximately, of 63 to the base 10. In table 
1 logarithms of numbers are given to five decimal places. 
This is sufficient for most purposes of the navigator. For 
greater precision, a table having additional places should be 
used. In general, the number of significant digits which are 
correct in an answer obtained by logarithms is the same as 
the number of places in the logarithms used.

A logarithm is composed of two parts. That part to the 
left of the decimal point is called the characteristic. That 
part to the right of the decimal point is called the mantissa. 
The principal advantage of using 10 as the base is that any 
given combination of digits has the same mantissa regard-
less of the position of the decimal point. Hence, only the 
mantissa is given in the main tabulation of table 1. Thus, the 
logarithm (mantissa) of 2,374 is given as 37548. This is cor-
rect for 2,374,000,000; 2,374; 23.74; 2.374; 0.2374; 
0.000002374; or for any other position of the decimal point.

The position of the decimal point determines the char-
acteristic, which is not affected by the actual digits 
involved. The characteristic of a whole number is one less 
than the number of digits. The characteristic of a mixed 
decimal (one greater than 1) is one less than the number of 
digits to the left of the decimal point. Thus, in the example 
given above, the characteristic of the logarithm of 
2,374,000,000 is 9; that of 2,374 is 3; that of 23.74 is 1; and 
that of 2.374 is 0. The complete logarithms of these num-
bers are:

17

21 376

21
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2.11 3.7000

211
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1055
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Since the mantissa of the logarithm of any multiple of 
ten is zero, the main table starts with 1,000. This can be con-
sidered 100, 10, 1, etc. Since the mantissa of these 
logarithms is zero, the logarithms consist of the character-
istic only, and are whole numbers. Hence, the logarithm of 
1 is 0 (0.00000), that of 10 is 1 (1.00000), that of 100 is 2 
(2.00000), that of 1,000 is 3 (3.00000), etc.

The characteristic of the logarithm of a number less 
than 1 is negative. However, it is usually more conveniently 
indicated in a positive form, as follows: the characteristic is 
found by subtracting the number of zeros immediately to 
the right of the decimal point from 9 (or 19, 29, etc.) and 
following this by -10 (or -20, -30, etc.). Thus, the character-
istic of the logarithm of 0.2374 is 9-10; that of 0.000002374 
is 4-10; and that of 0:000000000002374 is 8-20. The com-
plete logarithms of these numbers are:

When there is no question of the meaning, the -10 may 
be omitted. This is usually done when using logarithms of 
trigonometric functions, as shown in table 3. Thus, if there 
is no reasonable possibility of confusion, the logarithm of 
0.2374 may be written 9.37548.

Occasionally, the logarithm of a number less than 1 is 
shown by giving the negative characteristic with a minus 
sign above it (since only the characteristic is negative, the 
mantissa being positive). Thus, the logarithms of the num-
bers given above might be shown thus:

log 0.2374                      =  37548

log 0.000002374            =  37548

log 0.000000000002374= 37548

In each case, the negative characteristic is one more 
than the number of zeros immediately to the right of the 
decimal point.

There is no real logarithm of 0, since there is no finite
power to which any number can be raised to produce 0. As 
numbers approach 0, their logarithms approach negative 
infinity.

To find the number corresponding to a given logarithm, 
called finding the antilogarithm (“antilog”); enter the table 
with the mantissa of the given logarithm and determine the 
corresponding number, interpolating if necessary. Locate 
the position of the decimal point by means of the character-
istic of the logarithm, in accordance with the rules given 
above.

110. Multiplication by Logarithms

To multiply one number by another, add their loga-
rithms and find the antilogarithm of the sum. Thus, to 
multiply 1,635.8 by 0.0362 by logarithms:

Thus, 1,635.8×0.0362=59.216. In navigation it is cus-
tomary to use a slightly modified form, and to omit the -10 
where there is no reasonable possibility of confusion, as 
follows:

To raise a number to a power, multiply the logarithm 
of that number by the power indicated, and find the antilog-

arithm of the product. Thus, to find  by logarithms, 
using the navigational form:

111. Division by Logarithms

To divide one number by another, subtract the loga-
rithm of the divisor from that of the dividend, and find the 
antilogarithm of the remainder. Thus, to find 0.4637÷28.03 
by logarithms, using the navigational form:

It is sometimes necessary to modify the first logarithm 
before the subtraction can be made. This would occur in the 
example given above, for instance, if the divisor and divi-
dend were reversed, so that the problem became 
28.03÷0.4637. In this case 10-10 would be added to the log-
arithm of the dividend, becoming 11.44762-10:

One experienced in the use of logarithms usually car-
ries this change mentally, without showing it in his or her 
work form:

log 2,374,000,000=9.37548

log 2,374              =3.37548

log 23.74              =1.37548

log 2.374              =0.37548

log 2.374                        =9.37548 - 10

log 0.000002374            =4.37548 - 10

log 0.000000000002374=8.37548 - 20

1.

6.

12.

log 1635.8=  3.21373

log 0.0362=  8.55871-10 (add)

log 59.216=11.77244-10 or 1.77244

1635.8  log 3.21373

0.0362  log 8.55871

59.216   log 1.77244

13.1563

13.156  log 1.11913

x              3  (multiply)

2277.2  log 3.35739

0.4637  log       9.66624

28.03  log (-) 1.44762 (subtract)

0.016543  log 8.21862

28.03  log       11.44762 - 10

0.4637  log (-)    9.66624 - 10

60.448  log 1.78138

28.03  log       1.44762

0.4637  log (-)  9.66624

60.448  log 1.78138
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Any number can be added to the characteristic as long 
as that same number is also subtracted. Conversely, any 
number can be subtracted from the characteristic as long as 
that same number is also added. 

To extract a root of a number, divide the logarithm of 
that number by the root indicated, and find the antiloga-

rithm of the quotient. Thus, to find  by logarithms:

000007 log 0.84510 (÷2)
2.6458 log 0.42255

To divide a negative logarithm by the root indicated, 
first modify the logarithm so that the quotient will have a -10. 

Thus, to find  by logarithms:

0000.07 log 29.84510 - 30 (÷3)
0.88792 log 09.94837 - 10

or, carrying the -30 and -10 mentally,

00000.7 log 29.84510 (÷3)
0.88792 log 9.94837

112. Cologarithms

The cologarithm (“colog”) of a number is the value 
obtained by subtracting the logarithm of that number from 
zero, usually in the form 10-10. Thus, the logarithm of 
18.615 is 1.26987. The cologarithm is:

Similarly, the logarithm of 0.0018615 is 7.26987 -10, 
and its cologarithm is:

The cologarithm of a number is the logarithm of the re-
ciprocal of that number. Thus, the cologarithm of 2 is the 
logarithm of ½. Since division by a number is the same as 
multiplication by its reciprocal, the use of cologarithms per-
mits division problems to be converted to problems of 
multiplication, eliminating the need for subtraction of loga-
rithms. This is particularly useful when both multiplication 
and division are involved in the same problem. Thus, to find 

 by logarithm, one might add the 

logarithms of the three numbers in the numerator, and sub-
tract the logarithms of the two numbers in the denominator. 
If cologarithms are used for the numbers in the denomina-
tor, all logarithmic values are added. Thus, the solution 

might be made as follows:

113. . Various Kinds of Logarithms

As indicated above, common logarithms use 10 as the 
base. These are also called Brigg’s logarithms. For some 
purposes, it is convenient to use 2.7182818 approximately 
(designated e) as the base for logarithms. These are called 
natural logarithms or Naperian logarithms (loge). Com-
mon logarithms are shown as log10 when the base might 
otherwise be in doubt.

Addition and subtraction logarithms are logarithms 
of the sum and difference of two numbers. They are used 
when the logarithms of two numbers to be added or sub-
tracted are known, making it unnecessary to find the 
numbers themselves.

114. Slide Rule

 A slide rule is a mechanical analog computer. The 
slide rule is used primarily for multiplication and division, 
and also for functions such as roots, logarithms and trigo-
nometry. The device is now obsolete with the advent of the 
hand held electronic calculator in the mid-1970’s. Figure 
114 depicts a typical slide rule.

Slide rules come in many types and sizes, some de-
signed for specific purposes. The most common form 
consists of an outer “body” or “frame” with grooves to per-
mit a “slide” to be moved back and forth between the two 
outer parts, so that any graduation of a scale on the slide can 
be brought opposite any graduation of a scale on the body. 

7

0.73

10.00000-10

(-)1.26987

8.73013 10–

10.00000 - 10

(-)7.26987 10–

2.73013

92.732 0.0137 724.3××
0.516 3941.1×

-----------------------------------------------------------

Figure 114. Slide rule. By Jan1959 (own work) via 
Wikimedia Commons

92.732                          log 1.96723

0.0137                          log 8.13672

724.3                          log 2.85992

0.516  log 9.71265 colog 0.28735

3941.1  log 3.59562 colog 6.40438

0.45248                           log 9.65560
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A cursor called an “indicator” or “runner” is provided to as-
sist in aligning the desired graduations. In a circular slide 
rule the “slide” is an inner disk surrounded by a larger one, 
both pivoted at their common center. The scales of a slide 
rule are logarithmic. That is, they increase proportionally to 
the logarithms of the numbers indicated, rather than to the 
numbers themselves. This permits addition and subtraction 
of logarithms by simply measuring off part of the length of 
the slide from a graduated point on the body, or vice versa. 
Two or three complete scales within the length of the rule 
may be provided for finding squares, cubes, square roots, 
and cube roots.

Properly used, a slide rule can provide quick answers 
to many of the problems of navigation. However, its preci-
sion is usually limited to from two to four significant digits, 
and should not be used if greater precision is desired. 

Great care should be used in placing the decimal point 
in an answer obtained by slide rule, as the correct location 
often is not immediately apparent. Its position is usually de-
termined by making a very rough mental solution. Thus, 
2.93×8.3 is about 3×8=24. Hence, when the answer by slide 
rule is determined to be “243,” it is known that the correct 
value is 24.3, not 2.43 or 243.

115. Mental Arithmetic

Many of the problems of the navigator can be solved 
mentally. The following are a few examples.

If the speed is a number divisible into 60 a whole num-
ber of times, distance problems can be solved by a simple 
relationship. Thus, at 10 knots a ship steams 1 mile in 

minutes. At 12 knots it requires 5 minutes, at 15 

knots 4 minutes, etc. As an example of the use of such a re-
lationship, a vessel steaming at 12 knots travels 5.6 miles in 

28 minutes, since =5+ =5.6, or 0.1 mile every half 

minute.
For relatively short distances, one nautical mile can be 

considered equal to 6,000 feet. Since one hour has 60 min-
utes, the speed in hundreds of feet per minute is equal to the 
speed in knots. Thus, a vessel steaming at 15 knots is mov-
ing at the rate of 1,500 feet per minute. 

With respect to time, 6 minutes=0.1 hour, and 3 min-
utes = 0.05 hour. Hence, a ship steaming at 13 knots travels 
3.9 miles in 18 minutes (13×0.3), and 5.8 miles in 27 min-
utes (13×0.45).

In arc units, 6' = 0.1° and 6" = 0.1'. This relationship is 
useful in rounding off values given in arc units. Thus, 
17°23'44"=17°23.7' to the nearest 0.1', and 17.4° to the 
nearest 0.1°. A thorough knowledge of the six multiplica-
tion table is valuable. The 15 multiplication table is also 

useful, since 15°=lh. Hence, 16h=16×15=240°. This is par-
ticularly helpful in quick determination of zone description. 
Pencil and paper or a table should not be needed, for in-
stance, to decide that a ship at sea in longitude 157°18.4' W 
is in the (+)10 zone.

It is also helpful to remember that 1°=4m and 1'=4s. In 
converting the LMT of sunset to ZT, for instance, a quick 
mental solution can be made without reference to a table. 
Since this correction is usually desired only to the nearest 
whole minute, it is necessary only to multiply the longitude 
difference in degrees (to the nearest quarter degree) by four.

VECTORS

116. Scalars and Vector Quantities

A scalar is a quantity which has magnitude only; a 
vector quantity has both magnitude and direction. If a ves-
sel is said to have a tank of 5,000 gallons capacity, the 
number 5,000 is a scalar. As used in this book, speed alone 
is considered a scalar, while speed and direction are consid-
ered to constitute velocity, a vector quantity. Thus, if a 
vessel is said to be steaming at 18 knots, without regard to 
direction, the number 18 is considered a scalar; but if the 
vessel is said to be steaming at 18 knots on course 157°, the 
combination of 18 knots, and 157° constitutes a vector 
quantity. Distance and direction also constitute a vector 
quantity.

A scalar can be represented fully by a number. A vec-
tor quantity vector requires, in addition, an indication of 
direction. This is conveniently done graphically by means 
of a straight line, the length of which indicates the magni-
tude, and the direction of which indicates the direction of 
application of the magnitude. Such a line is called a vector. 

Since a straight line has two directions, reciprocals of each 
other, an arrowhead is placed along or at one end of a vector 
to indicate the direction represented, unless this is apparent 
or indicated in some other manner.

117. Addition and Subtraction of Vectors

Two vectors can be added by starting the second at the 
termination (rather than the origin) of the first. A common 
navigational use of vectors is the dead reckoning plot of a 
vessel. Refer to Figure 117 depicting the addition and sub-
traction of vectors. If a ship starts at A and steams 18 miles 
on course 090° and then 12 miles on course 060°, it arrives 
by dead reckoning at C. The line AB is the vector for the 
first run, and BC is the vector for the second. Point C is the 
position found by adding vectors AB and BC. The vector 
AC, in this case the course and distance made good, is the 
resultant. Its value, both in direction and amount, can be 
determined by measurement. Lines AB, BC, and AC are all 
distance vectors. Velocity vectors are used when deter-

60
10
------ 6=

28
5

------
3
5
---



MATHEMATICS 171

mining the effect of, or allowing for, current, 
interconverting true and apparent wind, and solving relative 
motion problems.

The reciprocal of a vector has the same magnitude but 
opposite direction of the vector. To subtract a vector, add
it's reciprocal. This is indicated by the broken lines in Fig-
ure 117, in which the vector BC' is drawn in the opposite 
direction to BC. In this case the resultant is AC'. Subtraction 
of vectors is involved in some current and wind problems.

ALGEBRA

118. Definitions

Algebra is that branch of mathematics dealing with 
computation by letters and symbols. It permits the mathe-
matical statement of certain relationships between 
variables. When numbers are substituted for the letters, al-
gebra becomes arithmetic. Thus if a=2b, any value may be 
assigned to b, and a can be found by multiplying the as-
signed value by 2. Any statement of equality (as a=2b) is an 
equation. Any combination of numbers, letters, and sym-
bols (as 2b) is a mathematical expression.

119. Symbols

As in arithmetic, plus (+) and minus (-) signs are used, 
and with the same meaning. Multiplication (×) and division 
(÷) signs are seldom used. In algebra, a×b is usually written 

ab, or sometimes a·b. For division a÷b is usually written 

or . The symbol > means “greater than” and < means 

“less than.” Thus,  means “a is greater than b,” and 

 means “a is equal to or greater than b.”

The order of performing the operations indicated in an 
equation should be observed carefully. Consider the equa-
tion a=b+cd-e/f. If the equation is to be solved for a, the 
value cd should be determined by multiplication and e/f by 
division before the addition and subtraction, as each of 
these is to be considered a single quantity in making the ad-
dition and subtraction. Thus, if cd=g and e/f=h, the formula 
can be written a=b+g-h.

If an equation including both multiplication and divi-
sion between plus or minus signs is not carefully written, 
some doubt may arise as to which process to perform first. 
Thus, a÷b×c or a/b×c may be interpreted to mean either that 
a/b is to be multiplied by c or that a is to be divided by b×c. 
Such an equation is better written ac/b if the first meaning 
is intended, or a/bc if the second meaning is intended.

Parentheses, ( ), may be used for the same purpose or 
to indicate any group of quantities that is to be considered a 
single quantity. Thus, a(b+c) is an indication that the sum 
of b and c is to be multiplied by a. Similarly, a+(b-c)2 indi-

cates that c is first to be subtracted from b, and then the 
result is to be squared and the value thus obtained added to 
a. When an expression within parentheses is part of a larger 
expression which should also be in parentheses, brackets, [ 
], are used in place of the outer parentheses. If yet another 
set is needed, braces, { }, are used.

A quantity written ab is better written ab  to re-
move any suggestion that the square root of 3ab is to be 
found.

120. Addition and Subtraction

Addition and subtraction.-A plus sign before an ex-
pression in parentheses means that each term retains its sign 
as given. Thus, a + (b + c - d) is the same as a + b + c- d. A 
minus sign preceding the parentheses means that each sign 
within the parentheses is to be reversed. For example, a - (b 
+ c - d) = a - b - c + d.

In any equation involving addition and subtraction, 
similar terms can be combined. Thus, a+b+c+b-2c-

d=a+2b-c-d. Also, a+3ab+a2-b-ab=a+2ab+ a2-b. That is, 
to be combined, the terms must be truly alike, for a cannot 

be combined with ab, or with a2.

Equal quantities can be added to or subtracted from 
both members of an equation without disturbing the equal-
ity. Thus, if a=b, a+2=b+2, or a+x=b+x. If x=y, then 
a+x=b+y.

121. Multiplication and Division

When an expression in parentheses is to be multiplied 
by a quantity outside the parentheses, each quantity separat-
ed by a plus or minus sign within the parentheses should be 
multiplied separately. Thus, a(b+cd-e/f) may be written 
ab+acd-ae/f. Any quantity appearing in every term of one 
member of an equation can be separated out by factoring, 
or dividing each term by the common quantity. Thus, if 

, the equation may be written 

Figure 117. Addition and subtraction of vectors.

a
b
---

a b⁄
a b>

a b≥

3 3

a bc
bd
e

------ b2 b+–+=
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.

Note that  = and  = b. This is the inverse of multi-

plication: a ×1= a, but a × a = a2. Also, a2 × a3 = a5; and 

. Thus, in multiplying a power of a number by a 

power of the same number, the powers are added, or, stated 

mathematically, am x an = . In division, , 

or the exponents are subtracted. If n is greater than m, a neg-
ative exponent results. A value with a negative exponent is 
equal to the reciprocal of the same value with a positive ex-

ponent. Thus,  and .

In raising to a power a number with an exponent, the 

two exponents are multiplied. Thus, (a2)3 = a2x3 = a6, or 

(an)m = anm. The inverse is true in extracting a root. Thus, 

, or . 

Both members of an equation can be multiplied or di-
vided by equal quantities without disturbing the equality, 
excluding division by zero or some expression equal to ze-
ro. Thus, if a=b+c, 2a=2(b+c), or if x=y, ax=y(b+c) and 

. Sometimes there is more than one answer to an 

equation. Division by one of the unknowns may eliminate 
one of the answers.

Both members of an equation can be raised to the same 
power, and like roots of both members can be taken, with-

out disturbing the equality. Thus, if a=b+c, a2=(b+c)2, or if 

x=y, ax=(b+c)y. This is not the same as ax=by+cy. Similarly, 

if a=b+c, , or if x=y, . Again, 

 is not equal to , as a numerical example will 

indicate: , but  does not equal 

.

If two quantities to be multiplied or divided are both 
positive or both negative, the result is positive. Thus, 

(+a)x(+b)=ab and =+ . But if, the signs are opposite, 

the answer is negative. Thus, (+a)x(-b)=-ab, and =- ; 

also, (-a)x(+b)=-ab, and =- .

In expressions containing both parentheses and brack-
ets, or both of these and braces, the innermost symbols are 

removed first. Thus, - =-

=- = .

122. Fractions

To add or subtract two or more fractions, convert each to 
an expression having the same denominator, and then add the 
numerators. 

Thus, = = . That is, 

both numerator and denominator of each fraction are multi-
plied by the denominator of the other remaining fractions. 

To multiply two or more fractions, multiply the numer-
ators by each other, and also multiply the denominators by 

each other. Thus, = .

To divide two fractions, invert the divisor and multi-

ply. Thus, = = .

If the same factor appears in all terms of a fraction, it 
can be factored out without changing the value of the frac-

tion. Thus, . This is the same as 

factoring a from the numerator and denominator separately. 

That is, , but since =1, this part 

can be removed, and the fraction appears as above. 

123. Transposition

It is sometimes desirable to move terms of an expres-
sion from one side of the equals sign (=) to the other. This 
is called transposition, and to move one term is to trans-
pose it. If the term to be moved is preceded by a plus or a 
minus sign, this sign is reversed when the term is trans-
posed. Thus, if , then , , 

, , , etc. Note that the 
signs of all terms can be reversed without destroying the 
equality, for if , . Thus, if all terms to the left 
of the equals sign are exchanged for all those to the right, 
no change in sign need take place, yet if each is moved in-
dividually, the signs reverse. For instance, if , 

. If each term is multiplied by -1, this becomes 

. 

A term which is to be multiplied or divided by all other 
terms on its side of the equation can be transposed if it is 
also moved from the numerator to the denominator, or vice 

versa. Thus, if , then , , , 

, etc. (Note that a = .) The same result could be ob-

tained by multiplying both sides of an equation by the same 
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quantity. For instance, if both sides of  are multiplied 

by c, the equation becomes  and since any number 

(except zero) divided by itself is unity, , and the 

equation becomes , as given above. Note, also, that 
both sides of an equation can be inverted without destroy-

ing the relationship, for if , , and  or 

. This is accomplished by transposing all terms of an 

equation. 
Note that in the case of transposition by changing the 

plus or minus sign, an entire expression must be changed, 
and not a part of it. Thus, if , , but it is 

not true that . Similarly, a term to be trans-
posed by reversing its multiplication-division relationship 
must bear that relationship to all other terms on its side of 

the equation. That is, if , it is not true that 

, or that , but . if 

.

124. Ratio and Proportions

If the relationship of a to b is the same as that of c to d, 

this fact can be written a : b :: c : d, or . Either side of 

this equation, or  is called a ratio and the whole equation 

is called a proportion. When a ratio is given a numerical 
value, it is often expressed as a decimal or as a percentage. 

Thus, if  (that is, , ), the ratio might be 

expressed as 0.25 or as 25 percent.
Since a ratio is a fraction, it can be handled as any other 

fraction.

GEOMETRY

125. Definition

Geometry deals with the properties, relations, and 
measurement of lines, surfaces, solids, and angles. Plane 
geometry deals with plane figures, and solid geometry
deals with three–dimensional figures.

A point, considered mathematically, is a place having 
position but no extent. It has no length, breadth, or thick-
ness. A point in motion produces a line, which has length, 
but neither breadth nor thickness. A straight or right line
is the shortest distance between two points in space. A line 
in motion in any direction except along itself produces a 
surface, which has length and breadth, but not thickness. 
A plane surface or plane is a surface without curvature. 
A straight line connecting any two of its points lies wholly 
within the plane. A plane surface in motion in any direc-
tion except within its plane produces a solid, which has 
length, breadth, and thickness. Parallel lines or surfaces 
are those which are everywhere equidistant. Perpendicu-
lar lines or surfaces are those which meet at right or 90°
angles. A perpendicular may be called a normal, particu-
larly when it is perpendicular to the tangent to a curved 
line or surface at the point of tangency. All points equidis-
tant from the ends of a straight line are on the 
perpendicular bisector of that line. The shortest distance 
from a point to a line is the length of the perpendicular be-
tween them.

126. Angles

An angle is formed by two straight lines which meet at
a point. It is measured by the arc of a circle intercepted be-
tween the two lines forming the angle, the center of the 

circle being at the point of intersection. In Figure 126a, the 
angle formed by lines AB and BC, may be designated “an-
gle B,” “angle ABC,” or “angle CBA”; or by Greek letter as 
“angle α.” The three letter designation is preferred if there 
is more than one angle at the point. When three letters are 
used, the middle one should always be that at the vertex of 
the angle.

An acute angle is one less than a right angle (90°).
A right angle is one whose sides are perpendicular (90°).
An obtuse angle is one greater than a right angle (90°) 

but less than 180°.
A straight angle is one whose sides form a continuous 

straight line (180°).
A reflex angle is one greater than a straight angle 

(180°) but less than a circle (360°). Any two lines meeting 
at a point form two angles, one less than a straight angle of 
180° (unless exactly a straight angle) and the other greater 
than a straight angle.

An oblique angle is any angle not a multiple of 90°.
Two angles whose sum is a right angle (90°) are comple-

mentary angles, and either is the complement of the other.
Two angles whose sum is a straight angle (180°) are 

supplementary angles, and either is the supplement of the 
other.

Two angles whose sum is a circle (360°) are exple-
mentary angles, and either is the explement of the other. 
The two angles formed when any two lines terminate at a 
common point are explementary.

If the sides of one angle are perpendicular to those of 
another, the two angles are either equal or supplementary. 
Also, if the sides of one angle are parallel to those of anoth-
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er, the two angles are either equal or supplementary.
When two straight lines intersect, forming four angles, 

the two opposite angles, called vertical angles, are equal. 
Angles which have the same vertex and lie on opposite 
sides of a common side are adjacent angles. Adjacent an-
gles formed by intersecting lines are supplementary, since 
each pair of adjacent angles forms a straight angle. Thus, in 
Figure 126a, lines AE and BF intersect at G. Angles AGB
and EGF form a pair of equal acute vertical angles, and 
BGE and AGF form a pair of equal obtuse vertical angles. 

A transversal is a line that intersects two or more other 
lines. If two or more parallel lines are cut by a transversal, 
groups of adjacent and vertical angles are formed, as shown 
in Figure 126b. In this situation, all acute angles (A) are 
equal, all obtuse angles (B) are equal, and each acute angle 
is supplementary to each obtuse angle. 

A dihedral angle is the angle between two intersecting 
planes.

127. Triangles

A plane triangle is a closed figure formed by three 
straight lines, called sides, which meet at three points called 
vertices. The vertices are labeled with capital letters and the 
sides with lowercase letters, as shown in Figure 127a, 
which depicts a triangle.

An equilateral triangle is one with its three sides 
equal in length. It must also be equiangular, with its three 

angles equal.
An isosceles triangle is one with two equal sides, 

called legs. The angles opposite the legs are equal. A line 
which bisects (divides into two equal parts) the unequal an-
gle of an isosceles triangle is the perpendicular bisector of 
the opposite side, and divides the triangle into two equal 
right triangles.

A scalene triangle is one with no two sides equal. In 
such a triangle, no two angles are equal.

An acute triangle is one with three acute angles.
A right triangle is one having a right angle. The side 

opposite the right angle is called the hypotenuse. The other 
two sides may be called legs. A plane triangle can have only 
one right angle.

An obtuse triangle is one with an obtuse angle. A 
plane triangle can have only one obtuse angle.

An oblique triangle is one which does not contain a 
right angle.

The altitude of a triangle is a line or the distance from 
any vertex perpendicular to the opposite side.

 A median of a triangle is a line from any vertex to the cen-
ter of the opposite side. The three medians of a triangle meet 
at a point called the centroid of the triangle. This point di-
vides each median into two parts, that part between the 
centroid and the vertex being twice as long as the other part.

Figure 126a. Acute, right, and obtuse angles.

Figure 126b. Acute, right, and obtuse angles.

Figure 126c. Angles formed by a transversal.

Figure 127a. A triangle.
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Lines bisecting the three angles of a triangle meet at a 
point which is equidistant from the three sides, which is the 
center of the inscribed circle, as shown in Figure 127b. 
This point is of particular interest to navigators because it is 
the point theoretically taken as the fix when three lines of 
position of equal weight and having only random errors do 
not meet at a common point. In practical navigation, the 
point is found visually, not by construction, and other fac-
tors often influence the chosen fix position.

The perpendicular bisectors of the three sides of a tri-
angle meet at a point which is equidistant from the three 
vertices, which is the center of the circumscribed circle, 
the circle through the three vertices and the smallest circle 
which can be drawn enclosing the triangle. The center of a 
circumscribed circle is within an acute triangle, on the hy-
potenuse of a right triangle, and outside an obtuse triangle.

A line connecting the mid–points of two sides of a tri-
angle is always parallel to the third side and half as long. 
Also, a line parallel to one side of a triangle and intersecting 
the other two sides divides these sides proportionally. This 
principle can be used to divide a line into any number of 
equal or proportional parts. Refer to Figure 127c, which de-
picts dividing a line into equal parts. Suppose it is desired 
to divide line AB into four equal parts. From A draw any line 
AC. Along C measure four equal parts of any convenient 
lengths (AD, DE, EF, and FG). Draw GB, and through F, E, 
and D draw lines parallel to GB and intersecting AB. Then 
AD', D' E', E' F', and F' B are equal and AB is divided into 
four equal parts.

The sum of the angles of a plane triangle is always 
180°. Therefore, the sum of the acute angles of a right tri-
angle is 90°, and the angles are complementary. If one side 
of a triangle is extended, the exterior angle thus formed is 
supplementary to the adjacent interior angle and is there-
fore equal to the sum of the two non adjacent angles. If two 
angles of one triangle are equal to two angles of another tri-
angle, the third angles are also equal, and the triangles are 
similar. If the area of one triangle is equal to the area of an-
other, the triangles are equal. Triangles having equal bases 
and altitudes also have equal areas. Two figures are con-
gruent if one can be placed over the other to make an exact 
fit. Congruent figures are both similar and equal. If any side 
of one triangle is equal to any side of a similar triangle, the 
triangles are congruent. For example, if two right triangles 
have equal sides, they are congruent; if two right triangles 
have two corresponding sides equal, they are congruent. 
Triangles are congruent only if the sides and angles are 
equal.

The sum of two sides of a plane triangle is always 
greater than the third side; their difference is always less 
than the third side.

The area of a triangle is equal to 1/2 of the area of the 
polygon formed from its base and height. If A = area, b = 
one of the legs of a right triangle or the base of any plane 
triangle, h = altitude, c = the hypotenuse of a right triangle, 
a = the other leg of a right triangle, and S = the sum of the 
interior angles:

The square of the hypotenuse of a right triangle is equal 
to the sum of the squares of the other two sides, or a2 + b2

= c2. Therefore the length of the hypotenuse of plane right 
triangle can be found by the formula:

128. Polygons

A polygon is a closed plane figure made up of three or 
more straight lines called sides. A polygon with three sides 
is a triangle, one with four sides is a quadrilateral, one 
with five sides is a pentagon, one with six sides is a 
hexagon, and one with eight sides is an octagon. An 
equilateral polygon has equal sides. An equiangular
polygon has equal interior angles. A regular polygon is 
both equilateral and equiangular. As the number of sides of 
a regular polygon increases, the figure approaches a circle.

A trapezoid is a quadrilateral with one pair of opposite 
sides parallel and the other pair not parallel. A parallelo-
gram is a quadrilateral with both pairs of opposite sides 

Figure 127b. A circle inscribed in a triangle.

Figure 127c. Dividing a line into equal parts.
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parallel. Any side of a parallelogram, or either of the paral-
lel sides of a trapezoid, is the base of the figure. The 
perpendicular distance from the base to the opposite side is 
the altitude. A rectangle is a parallelogram with four right 
angles. (If anyone is a right angle, the other three must be, 
also.) A square is a rectangle with equal sides. A rhom-
boid is a parallelogram with oblique angles. A rhombus is 
a rhomboid with equal sides.

The sum of the exterior angles of a convex polygon 
(one having no interior reflex angles), made by extending 
each side in one direction only (consistently), is 360°.

A diagonal of a polygon is a straight line connecting 
any two vertices which are not adjacent. The diagonals of a 
parallelogram bisect each other.

The perimeter of a polygon is the sum of the lengths 
of its sides.

If A = area, s = the side of a square, a = that side of a 
rectangle adjacent to the base or that side of a trapezoid par-
allel to the base, b = the base of a quadrilateral, h = the 
altitude of a parallelogram or trapezoid, S = the sum of the 
angles of a polygon, and n = the number of sides of a 
polygon:

Area of a square: 

Area if a rectangle: 

Area of a parallelogram: 

Area of a trapezoid: 

Sum of angles in convex polygon: .

129. Circles

A circle is a plane, closed curve, all points of which are 
equidistant from a point within, called the center. See Fig-
ure 129 depicting elements of a circle.

The distance around a circle is called the circumfer-
ence. Technically the length of this line is the perimeter, 
although the term “circumference” is often used. An arc is 
part of a circumference. A major arc is more than a semi-
circle (180°), a minor arc is less than a semicircle (180°). 
A semi–circle is half a circle (180°), a quadrant is a quar-
ter of a circle (90°), a quintant is a fifth of a circle (72°), a
sextant is a sixth of a circle (60°), an octant is an eighth of 
a circle (45°). Some of these names have been applied to in-
struments used by navigators for measuring altitudes of 
celestial bodies because of the part of a circle used for the 
length of the arc of the instrument.

Concentric circles have a common center. A radius
(plural radii) or semidiameter is a straight line connecting 
the center of a circle with any point on its circumference. In 
Figure 129, CA, CB, CD, and CE are radii

A diameter of a circle is a straight line passing through 
its center and terminating at opposite sides of the circumfer-
ence, or two radii in opposite directions (BCD, Figure 129). 
It divides a circle into two equal parts. The ratio of the 
length of the circumference of any circle to the length of its 

diameter is 3.14159+, or π (the Greek letter pi), a relation-
ship that has many useful applications.

A sector is that part of a circle bounded by two radii 
and an arc. In Figure 129, BCE, ECA, ACD, BCA, and ECD
are sectors.The angle formed by two radii is called a cen-
tral angle. Any pair of radii divides a circle into sectors, 
one less than a semicircle (180°) and the other greater than 
a semicircle (unless the two radii form a diameter).

A chord is a straight line connecting any two points on 
the circumference of a circle (FG, GN in Figure 129). 
Chords equidistant from the center of a circle are equal in 
length.

A segment is the part of a circle bounded by a chord 
and the intercepted arc (FGMF, NGMN in Figure 129). A 
chord divides a circle into two segments, one less than a 
semicircle (180°), and the other greater than a semicircle 
(unless the chord is a diameter). A diameter perpendicular 
to a chord bisects it, its arc, and its segments. Either pair of 
vertical angles formed by intersecting chords has a com-
bined number of degrees equal to the sum of the number of 
degrees in the two arcs intercepted by the two angles.

An inscribed angle is one whose vertex is on the cir-
cumference of a circle and whose sides are chords (FGN in 
Figure 129). It has half as many degrees as the arc it inter-
cepts. Hence, an angle inscribed in a semicircle is a right 
angle if its sides terminate at the ends of the diameter form-
ing the semicircle.

A secant of a circle is a line intersecting the circle, or 
a chord extended beyond the circumference (KL in Figure 
129).

A tangent to a circle is a straight line, in the plane of 
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Figure 129. Elements of a circle.
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the circle, which has only one point in common with the cir-
cumference (HJ in Figure 129). A tangent is perpendicular 
to the radius at the point of tangency (A in Figure 129). 
Two tangents from a common point to opposite sides of a 
circle are equal in length, and a line from the point to the 
center of the circle bisects the angle formed by the two tan-
gents. An angle formed outside a circle by the intersection 
of two tangents, a tangent and a secant, or two secants has 
half as many degrees as the difference between the two in-
tercepted arcs. An angle formed by a tangent and a chord, 
with the apex at the point of tangency, has half as many de-
grees as the arc it intercepts. A common tangent is one 
tangent to more than one circle. Two circles are tangent to 
each other if they touch at one point only. If of different siz-
es, the smaller circle may be either inside or outside the 
larger one.

Parallel lines intersecting a circle intercept equal arcs.
If A = area; r = radius; d = diameter; C = circum-

ference; s = linear length of an arc; a = angular length of an 
arc, or the angle it subtends at the center of a circle, in 
degrees; b = angular length of an arc, or the angle it 
subtends at the center of a circle, in radians; rad = radians 
and sin = sine: 

130. Polyhedrons

A polyhedron is a solid having plane sides or faces. 
A cube is a polyhedron having six square sides.
A prism is a solid having parallel, similar, equal, plane 

geometric figures as bases, and parallelograms as sides. By 
extension, the term is also applied to a similar solid having 
nonparallel bases, and trapezoids or a combination of trap-
ezoids and parallelograms as sides. The axis of a prism is 

the straight line connecting the centers of its bases. A right 
prism is one having bases perpendicular to the axis. The 
sides of a right prism are rectangles. A regular prism is a 
right prism having regular polygons as bases. The altitude
of a prism is the perpendicular distance between the planes 
of its bases. In the case of a right prism it is measured along 
the axis.

A pyramid is a polyhedron having a polygon as one 
end, the base; and a point, the apex, as the other; the two 
ends being connected by a number of triangular sides or 
faces. The axis of a pyramid is the straight line connecting 
the apex and the center of the base. A right pyramid is one 
having its base perpendicular to its axis. A regular pyra-
mid is a right pyramid having a regular polygon as its base. 
The altitude of a pyramid is the perpendicular distance from 
its apex to the plane of its base. A truncated pyramid is 
that portion of a pyramid between its base and a plane inter-
secting all of the faces of the pyramid.

If A = area, s = edge of a cube or slant height of a reg-
ular pyramid (from the center of one side of its base to the 
apex), V = volume, a = side of a polygon, h = altitude, P = 
perimeter of base, n = number of sides of polygon, B = area 
of base, and r = perpendicular distance from the center of 
side of a polygon to the center of the polygon:

Cube:

Area of each face: 

Total area of all faces: 

Volume: 

Regular prism:
Area of each face: 

Total area of all faces: 

Area of each base: 

Total area of both bases: 

Volume: 

Regular pyramid:

Area of each face: 

Total area of all faces: 

Area of base: 

Volume: 

131. Cylinders

A cylinder is a solid having two parallel plane bases
bounded by closed congruent curves, and a surface formed 
by an infinite number of parallel lines, called elements, 
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connecting similar points on the two curves. A cylinder is 
similar to a prism, but with a curved lateral surface, instead 
of a number of flat sides connecting the bases. The axis of a 
cylinder is the straight line connecting the centers of the 
bases. A right cylinder is one having bases perpendicular to 
the axis. A circular cylinder is one having circular bases. 
The altitude of a cylinder is the perpendicular distance 
between the planes of its bases. The perimeter of a base is 
the length of the curve bounding it.

If A = area, P = perimeter of base, h = altitude, r = ra-
dius of a circular base, B = area of base, and V = volume, 
then for a right circular cylinder:

Lateral area: 

Area of each base: 

Total area, both bases: 

Volume: 

132. Cones

A cone is a solid having a plane base bounded by a 
closed curve, and a surface formed by lines, called 
elements, from every point on the curve to a common point 
called the apex. A cone is similar to a pyramid, but with a 
curved surface connecting the base and apex, instead of a 
number of flat sides. The axis of a cone is the straight line 
connecting the apex and the center of the base. A right cone
is one having its base perpendicular to its axis. A circular 
cone is one having a circular base. The altitude of a cone is 
the perpendicular distance from its apex to the plane of its 
base. A frustum of a cone is that portion of the cone 
between its base and any parallel plane intersecting all 
elements of the cone. A truncated cone is that portion of a 
cone between its base and any nonparallel plane which 
intersects all elements of the cone but does not intersect the 
base.

If A = area, r = radius of base, s = slant height or length 
of element, B = area of base, h = altitude, and V = volume, 
then for a right circular cone:

Lateral area: 

Area of base: 

Slant height: 

Volume: 

133. Conic Sections

If a right circular cone of indefinite extent is intersected 
by a plane perpendicular to the axis of the cone the line of 
intersection of the plane and the surface of the cone is a 
circle. Refer to Figure 133a for a depiction of conic sections.

If an intersecting plane is tilted to some position, the in-

tersection is an ellipse or flattened circle, see Figure 133b. 
The longest diameter of an ellipse is called its major axis, 
and half of this is its semimajor axis, which is identified by 
the letter “a” in Figure 133b. The shortest diameter of an el-
lipse is called its minor axis, and half of this is its 
semiminor axis, which is identified by the letter “b” in fig-
ure Figure 133b. Two points, F and F’, called foci (singular 
focus) or focal points, on the major axis are so located that 
the sum of their distances from any point P on the curve is 
equal to the length of the major axis. That is 
(Figure 133b). The eccentricity (e) of an ellipse is equal to 

, where c is the distance from the center to one of the foci 

( ). It is always greater than 0 but less than 1.

If an intersecting plane is parallel to one element of the 
cone the intersection is a parabola, See Figure 133c Any 
point P on a parabola is equidistant from a fixed point F, 
called the focus or focal point, and a fixed straight line, AB, 
called the directrix. Thus, for any point P, . The 
point midway between the focus F and the directrix AB is 
called the vertex, V. The straight line through F and V is 
called the axis, CD. This line is perpendicular to the direc-
trix AB. The eccentricity (e) of a parabola is 1. 

If the elements of the cone are extended to form a sec-
ond cone having the same axis and apex but extending in 
the opposite direction, and the intersecting plane is tilted 
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Figure 133a. Conic sections.

Figure 133b. An ellipse.
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beyond the position forming a parabola, so that it intersects 
both curves, the intersections of the plane with the cones is 
a hyperbola, See Figure 133d. There are two intersections 
or branches of a hyperbola, as shown. At any point P on ei-
ther branch, the difference in the distance from two fixed 
points called foci or focal points, F and F', is constant and 
equal to the shortest distance between the two branches. 
That is,  (Figure 133d). The straight line 
through F and F' is called the axis. The eccentricity (e) of 

a hyperbola is the ratio  (Figure 133d). It is always greater 

than 1.
Each branch of a hyperbola approaches ever closer to, 

but never reaches, a pair of intersecting straight lines, AB 
and CD, called asymptotes. These intersect at G.

The various conic sections bear an eccentricity rela-
tionship to each other. The eccentricity of a circle is 0, that 
of an ellipse is greater than 0 but less than 1; that of a parab-
ola or straight line (a limiting case of a parabola) is 1, and 
that of a hyperbola is greater than 1.

If e = eccentricity, A = area, a = semimajor axis of an 
ellipse or half the shortest distance between the two branch-
es of a hyperbola, b = the semiminor axis of an ellipse, and 
c = the distance between the center of an ellipse and one of 
its focal points or the distance between the focal point of a 
hyperbola and the intersection of its asymptotes:

Circle:
Eccentricity: 
Ellipse:
Area: 

Eccentricity: , greater that 0, but less than 1.

Parabola: 
Eccentricity: 
Hyperbola: 

Eccentricity: , greater than 1.

When cones are intersected by some surface other than 
a plane, as the curved surface of the earth, the resulting sec-
tions do not follow the relationships given above, the 
amount of divergence therefrom depending upon the indi-
vidual circumstances.

134. Spheres

A sphere is a solid bounded by a surface every point of 
which is equidistant from a point within called the center. It 
may also be formed by rotating a circle about any diameter.

A radius or semidiameter of a sphere is a straight line 
connecting its center with any point on its surface. A diam-
eter of a sphere is a straight line through its center and 
terminated at both ends by the surface of the sphere. The 
poles of a sphere are the ends of a diameter. 

The intersection of a plane and the surface of a sphere 
is a circle, a great circle if the plane passes through the cen-
ter of the sphere, and a small circle if it does not. The shorter 
arc of the great circle between two points on the surface of a 
sphere is the shortest distance, on the surface of the sphere, 
between the points. Every great circle of a sphere bisects ev-
ery other great circle of that sphere. The poles of a circle on 
a sphere are the extremities of the sphere’s diameter which 
is perpendicular to the plane of the circle. All points on the 
circumference of the circle are equidistant from either of its 
poles. In the ease of a great circle, both poles are 90° from 
any point on the circumference of the circle. Any great circle 
may be considered a primary, particularly when it serves as 
the origin of measurement of a coordinate. The great circles 
through its poles are called secondary. Secondaries are per-

Figure 133c. A parabola.
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pendicular to their primary.
A spherical triangle is the figure formed on the sur-

face of a sphere by the intersection of three great circles. 
The lengths of the sides of a spherical triangle are measured 
in degrees, minutes, and seconds, as the angular lengths of 
the arcs forming them. The sum of the three sides is always 
less than 360°. The sum of the three angles is always more
than 180° and less than 540°.

A lune is the part of the surface of a sphere bounded by 
halves of two great circles.

A spheroid is a flattened sphere, which may be formed 
by rotating an ellipse about one of its axes. An oblate 
spheroid, such as the earth, is formed when an ellipse is ro-
tated about its minor axis. In this case the diameter along 
the axis of rotation is less than the major axis. A prolate 
spheroid is formed when an ellipse is rotated about its ma-
jor axis. In this case the diameter along the axis of rotation 
is greater than the minor axis.

If A = area, r = radius, d = diameter, and V = volume of 
a sphere:

Area: 

Volume: 

If A = area, a = semimajor axis, b = semiminor axis, e
= eccentricity, and V = volume of an oblate spheroid: 

Area: 

Eccentricity: 

Volume: 

135. Coordinates

Coordinates are magnitudes used to define a position. 
Many different types of coordinates are used. Important 
navigational ones are described below.

If a position is known to be at a stated point, no magni-
tudes are needed to identify the position, although they may 
be required to locate the point. Thus, if a vessel is at port A, 
its position is known if the location of port A is known, but 
latitude and, longitude may be needed to locate port A.

If a position is known to be on a given line, a single 
magnitude (coordinate) is needed to identify the position if 
an origin is stated or understood. Thus, if a vessel is known 
to be south of port B, it is known to be on a line extending 
southward from port B. If its distance from port B is known, 
and the position of port B is known, the position of the ves-
sel is uniquely defined.

If a position is known to be on a given surface, two 
magnitudes (coordinates) are needed to define the position. 
Thus, if a vessel is known to be on the surface of the earth, 

its position can be identified by means of latitude and 
longitude. Latitude indicates its angular distance north or 
south of the equator, and longitude its angular distance east 
or west of the prime meridian.

If nothing is known regarding a position other than that 
it exists in space, three magnitudes (coordinates) are needed 
to define its position. Thus, the position of a submarine may 
be defined by means of latitude, longitude, and depth below 
the surface.

Each coordinate requires an origin, either stated or im-
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Figure 135a. Rectangular coordinates.

Figure 135b. Polar coordinates.
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plied. If a position is known to be on a given plane, it might be 
defined by means of its distance from each of two intersecting 
lines, called axes. These are called rectangular coordinates. 
In Figure 135a, OY is called the ordinate, and OX is called the 
abscissa. Point O is the origin, and lines OX and OY the axes 
(called the X and Y axes, respectively). Point A is at position x, 
y. If the axes are not perpendicular but the lines x and y are 
drawn parallel to the axes, oblique coordinates result. Either 
type are called Cartesian coordinates. A three–dimensional 
system of Cartesian coordinates, with X, Y, and Z axes, is 
called space coordinates.

Another system of plane coordinates in common usage 
consists of the direction and distance from the origin 

(called the pole), as shown in Figure 135b. A line extending 
in the direction indicated is called a radius vector. Direc-
tion and distance from a fixed point constitute polar 
coordinates, sometimes called the rho– (the Greek ρ, to in-
dicate distance) theta (the Greek θ, to indicate direction) 
system. An example of its use is the radar scope.

Spherical coordinates are used to define a position on 
the surface of a sphere or spheroid by indicating angular 
distance from a primary great circle and a reference second-
ary great circle. Examples used in navigation are latitude 
and longitude, altitude and azimuth, and declination and 
hour angle.

TRIGONOMETRY

136. Definitions

Trigonometry deals with the relations among the 
angles and sides of triangles. Plane trigonometry deals 
with plane triangles, those on a plane surface. Spherical 
trigonometry deals with spherical triangles, which are drawn 
on the surface of a sphere. In navigation, the common 
methods of celestial sight reduction use spherical triangles 
on the surface of the Earth. For most navigational purposes, 
the Earth is assumed to be a sphere, though it is somewhat 
flattened.

137. Angular Measure

A circle may be divided into 360 degrees (°), which is 
the angular length of its circumference. Each degree may 
be divided into 60 minutes ('), and each minute into 60 sec-
onds ("). The angular measure of an arc is usually 
expressed in these units. By this system a right angle or 
quadrant has 90° and a straight angle or semicircle 180°. In 
marine navigation, altitudes, latitudes, and longitudes are 
usually expressed in degrees, minutes, and tenths 
(27°14.4'). Azimuths are usually expressed in degrees and 
tenths (164.7°). The system of degrees, minutes, and sec-
onds indicated above is the sexagesimal system. In the 
centesimal system, used chiefly in France, the circle is di-
vided into 400 centesimal degrees (sometimes called 
grades) each of which is divided into 100 centesimal min-
utes of 100 centesimal seconds each.

A radian is the angle subtended at the center of a circle 
by an arc having a linear length equal to the radius of the 
circle. A radian is equal to 57.2957795131° approximately, 
or 57°17'44.80625" approximately. The radian is some-
times used as a unit of angular measure. See Figure 137. A 
circle  radians, a semicircle  radi-

ans, a right angle measure  radians, and l' = 

0.0002908882 radians approximately.The length of the arc 
of a circle is equal to the radius multiplied by the angle sub-
tended in radians.

138. Trigonometry 

Trigonometry is that branch of mathematics dealing 
with the relations among the angles and sides of triangles. 
Plane trigonometry is that branch dealing with plane trian-
gles, and spherical trigonometry is that branch dealing 
with spherical triangles.

 Trigonometric functions are the various proportions 
or ratios of the sides of a plane right triangle, defined in re-
lation to one of the acute angles. In Figure 138a, let θ be any 
acute angle. From any point R on line OA, draw a line per-
pendicular to OB at F. From any other point R' on OA, draw 
a line perpendicular to OB at F'. Then triangles OFR and 
OF'R' are similar right triangles because all their corre-
sponding angles are equal. Since in any pair of similar 
triangles the ratio of any two sides of one triangle is equal to 

360°( ) 2π= 180°( ) π=

90°( ) π
2
---=

Figure 137. Image depicting one radian.
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the ratio of the corresponding two sides of the other triangle,

, , and 

No matter where the point R is located on OA, the ratio 
between the lengths of any two sides in the triangle OFR 
has a constant value. Hence, for any value of the acute angle 
θ, there is a fixed set of values for the ratios of the various 
sides of the triangle. These ratios are defined as follows:

Of these six principal functions, the second three are 
the reciprocals of the first three; therefore

In Figure 138c, A, B, and C are the angles of a plane 
right triangle, with the right angle at C. The sides are la-
beled a, b, c, with opposite angles labeled A, B, and C
respectively. 

The six principal trigonometric functions of angle B
are:

Figure 138a. Similar right triangles.

Figure 138b. Numerical relationship of sides of a 30°-60°-
90° triangle.

Figure 138c. A right triangle.
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-------------------------------

= 
hypotenuse

side adjacent
-------------------------------

= 
side adjacent
side opposite
-------------------------------

θsin
1

θcsc
-----------=                    θcsc

1
θsin

-----------=

θcos
1

θsec
-----------=                     θsec

1
θcos

------------=

θtan
1

θcot
-----------=                     θcot

1
θtan

-----------=

 B          
b
c
---             A           cos 90° B–( )cos= ==sin

 B          
a
c
--             A           sin 90° B–( )sin= ==cos

 B          
b
a
---             A           cot 90° B–( )cot= ==tan

 B          
a
b
---             tan A           90° B–( )tan= ==cot

 B          
c
a
--             A           csc 90° B–( )csc= ==sec
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Since A and B are complementary, these relations show 
that the sine of an angle is the cosine of its complement, the 
tangent of an angle is the cotangent of its complement, and 
the secant of an angle is the cosecant of its complement. 
Thus, the co-function of an angle is the function of its 
complement.

Certain additional relations are also classed as trigono-
metric functions: 

versed sine = versine = vers = ver = 1- cos 

versed cosine = coversed sine 

(therefore) coversed sine  = coversine 

(therefore) coversine = covers 

(therefore) covers = cov 

(therefore) cov =1 - sin 

haversine = hav  ver .

The numerical value of a trigonometric function is 
sometimes called the natural function to distinguish it from 
the logarithm of the function, called the logarithmic func-
tion. Numerical values of the six principal functions are 
given at l' intervals in Table 2- Natural Trigonometric Func-
tions. Logarithms are given at the same intervals in Table 3- 
Common Logarithms of Trigonometric Functions. 

Since the relationships of 30°, 60°, and 45° right trian-

Figure 138d. Numerical relationship of sides of a 45°-45°-
90° triangle.

Function 30° 45° 60°

sine

cosine

tangent

cotangent

Table 138e. Values of various trigonometric functions for 
angles 30°, 45°, and 60°.

 B          
c
b
---             sec A           90° B–( )sec= ==csc

1
2
---

1

2
-------

1
2
--- 2= 3

2
-------

1
2
--- 3=

3
2

-------
1
2
--- 3=

1

2
-------

1
2
--- 2= 1

2
---

1

3
-------

1
3
--- 3= 1

1
--- 1= 3

1
------- 3=

3
1

------- 3= 1
1
--- 1=

1

3
-------

1
3
--- 3=

secant

cosecant

Function 30° 45° 60°

Table 138e. Values of various trigonometric functions for 
angles 30°, 45°, and 60°.

2

3
-------

2
3
--- 3= 2

1
------- 2=

2
1
--- 2=

2
1
--- 2= 2

1
------- 2=

2

3
-------

2
3
--- 3=

90° A )          = Acos–(sin

90° A )          = Asin–(cos

90° A )          = Acot–(tan

90° A )          = Atan–(cot

90° A )          = Acsc–(sec

90° A )          = Asec–(csc

θ θ θ θ θ
θ θ

θ θ
θ θ

θ θ
θ θ

θ θ 1 2⁄= θ 1 2⁄( ) 1 θcos–( )=



184 MATHEMATICS

gles are as shown in Figure 138c and Figure 138b, certain 
values of the basic functions can be stated exactly, as shown 
in Table 138e.

All trigonometric functions can be shown as lengths of 
lines in a unit circle. See Figure 138f for a depiction of the 
following equations: 

 sin θ = RF 
cot θ = ΑΒ
cos θ = OF
sec θ = OD
tan θ = DE
csc θ = OA
ver θ = FE
cov θ = BC

 

139. Functions in Various Quadrants

To make the definitions of the trigonometric functions 
more general to include those angles greater than  90°,  the
functions are defined in terms of the rectangular Cartesian 
coordinates of point R of Figure 138a, due regard being giv-
en to the sign of the function. In Figure 139a, OR is 
assumed to be a unit radius. By convention the sign of OR 
is always positive. This radius is imagined to rotate in a 
counterclockwise direction through 360° from the horizon-
tal position at 0°, the positive direction along the X axis. 
Ninety degrees (90°) is the positive direction along the Y 
axis. The angle between the original position of the radius 
and its position at any time increases from 0° to 90° in the 
first quadrant (I), 90° to 180° in the second quadrant (II), 
180° to 270° in the third quadrant (III), and 270° to 360° in 
the fourth quadrant (IV).

The numerical value of the sine of an angle is equal to 
the projection of the unit radius on the Y–axis. According 

to the definition given in Section138, the sine of angle in the 

first quadrant of Figure 139a is . If the radius OR is 

equal to one, sin θ =+y. Since +y is equal to the projection 
of the unit radius OR on the Y axis, the sine function of an 
angle in the first quadrant defined in terms of rectangular 
Cartesian coordinates does not contradict the definition in 
Section 138. In Figure 139a,

The numerical value of the cosine of an angle is equal to 
the projection of the unit radius on the X axis. In Figure 139a,

The numerical value of the tangent of an angle is equal 
to the ratio of the projections of the unit radius on the Y and 
X axes. In Figure 139a, 

The cosecant, secant, and cotangent functions of angles 
in the various quadrants are similarly determined:

 

Figure 138f. Line definitions of trigonometric functions.

sin θ = +y

sin (180°−θ) = +y = sin θ 

sin (180° +θ) = –y = –sin θ 

sin (360° −θ) = –y = sin (–θ) = –sin θ 

cos θ = +x
cos (180°−θ) = –x = –cos θ
cos (180°+θ) = –x = –cos θ
cos (360°−θ) = +x =  cos (–θ) = cos θ 

tan θ =

(180° −θ) = = –tan θ

tan (180° +θ) = =  tan θ

tan (360° −θ) = =  tan (–θ) = –tan θ 

+y
+OR
-----------

+y
+x
------

+y
x–------

y–
x–------

y–
+x
------

θ 1
+y
------=csc

180( ° θ ) 1
+y
------ θcsc==–csc

180( °+θ ) 1
-y
----- θcsc–==csc
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The signs of the functions in the four different quad-
rants are shown below:

These relationships are shown in Table 139c and 
graphically in Figure 139d through Figure 139f.

 

The numerical values vary by quadrant as shown above:

As shown in Figure 139a and Table 139b, the sign (+ 
or - ) of the functions varies with the quadrant of an angle. 
In Figure 139a radius OR is imagined to rotate in a counter-

Figure 139a. The functions in various quadrants, 
mathematical convention.

360( ° θ– ) 1
-y
----- θ ) θcsc–=–(csc==csc

θ 1
+x
------=sec

180( ° θ– ) 1
x–

------ θsec–==sec

180( °+θ ) 1
x–

------ θsec–==sec

360( ° θ– ) 1
+x
------ θ ) θsec=–(sec==sec

θ +x
+y
------=cot

180( ° θ– ) x–
+y
------ θcot–==cot

180( °+θ ) x–

y–
------ θcot==cot

I II III IV

sine and cosecant + + - -
cosine and secant + - - +

tangent and cotangent + - + -

Table 139b. Signs of trigonometric functions by 
quadrants.

I II III IV

sin 0 to +1 +1 to 0 0 to –1 –1 to 0
csc +∞ to +1 +1 to 0 –∞ to –1 –1 to –∞

cos +1 to 0 0 to –1 –1 to 0 0 to +1
sec +1 to +∞ –∞ to –1 –1 to –∞ +∞ to +1

tan 0 to +∞ –∞ to 0 0 to +∞ –∞ to 0
cot +∞ to 0  0 to –∞ +∞ to 0 0 to –∞

Table 139c. Values of trigonometric functions in various 
quadrants.

Figure 139d. Graphic representation of values of 
trigonometric functions in various quadrants.

360( ° θ– ) +x
-y
------ θ ) θ.cot–=–(cot==cot
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clockwise direction through 360° from the horizontal 
position at 0°. This is the mathematical convention. In 
Figure 139h this concept is shown in the usual navigational 
convention of a compass rose, starting with 000° at the top 
and rotating clockwise. In either diagram the angle  be-

tween the original position of the radius and its position at 
any time increases from 0° to 90° in the first quadrant (I), 
90° to 180° in the second quadrant (II), 180° to 270° in the 
third quadrant (III), and 270° to 360° in the fourth quadrant
(IV). Also in either diagram, 0° is the positive direction 
along the X-axis. Ninety degrees (90°) is the positive direc-
tion along the Y-axis. Therefore, the projections of the unit 
radius OR on the X- and Y-axes, as appropriate, produce 
the same values of the trigonometric functions. 

 

A negative angle (- ) is an angle measured in a clock-
wise direction (mathematical convention) or in a direction 
opposite to that of a positive angle. The functions of a neg-
ative angle and the corresponding functions of a positive 

Figure 139e. Graphic representation of values of 
trigonometric functions in various quadrants.

Figure 139f. Graphic representation of values of 
trigonometric functions in various quadrants.

θ

Figure 139g. Graphic representation of values of 
trigonometric functions in various quadrants.

Figure 139h. The functions in various quadrants.

θ
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angle are as follows:

140. Trigonometric Identities

A trigonometric identity is an equality involving trig-
onometric functions of θ which is true for all values of θ, 
except those values for which one of the functions is not de-
fined or for which a denominator in the equality is equal to 
zero. The fundamental identities are those identities from 
which other identities can be derived.

141. Reduction Formulas

142. . Inverse Trigonometric Functions

An angle having a given trigonometric function may be 
indicated in any of several ways. Thus, sin y = x, y = arc sin 

x, and y = sin–1 x have the same meaning. The superior “–1” 
is not an exponent in this case. In each case, y is “the angle 
whose sine is x.” In this case, y is the inverse sine of x. Sim-
ilar relationships hold for all trigonometric functions.

SOLVING TRIANGLES

Solution of triangles. A triangle is composed of six 
parts: three angles and three sides. The angles may be des-
ignated A, B, and C; and the sides opposite these angles as 
a, b, and c, respectively. In general, when any three parts 
are known, the other three parts can be found, unless the 
known parts are the three angles of a plane triangle.

143. Right Plane Triangles

In a right plane triangle it is only necessary to substi-
tute numerical values in the appropriate formulas 
representing the basic trigonometric functions and solve. 

Thus, if a and b are known, 

Similarly, if c and B are given,

θ–( )sin θsin–=

θ–( )cos θcos=

θ–tan θtan–=

θ–( )tan 360° θ–( )tan=

θsin
1

θcsc
-----------=                     θcsc

1
θsin

-----------=

θcos
1

θsec
-----------=                     θsec

1
θcos

------------=

θtan
1

θcot
-----------=                     θcot

1
θtan

-----------=

θtan
θsin
θcos

------------=                     θcot
θcos
θsin

------------=

sin2θ cos2θ 1          tan2θ 1 sec2= θ+=+

          1 θ2
cot+ θ2

csc=

90° θ ) θcos=–(sin

90° θ ) θsin=–(cos

90° θ ) θcot=–(tan

90° θ ) θsec=–(csc

90° θ ) θcsc=–(sec

90° θ ) θtan=–(cot

θ ) θsin–=–(sin

θ ) θcos=–(cos

θ ) θtan–=–(tan

θ ) θcsc–=–(csc

θ ) θsec=–(sec

θ ) θcot–=–(cot

90+θ ) θcos=(sin

90+θ ) θsin–=(cos

90+θ ) θcot–=(tan

90+θ ) θsec=(csc

90+θ ) θcsc–=(sec

90+θ ) θtan–=(cot

180°+θ ) θsin–=(sin

180°+θ ) θcos–=(cos

180°+θ ) θtan=(tan

180°+θ ) θcsc–=(csc

180°+θ ) θsec–=(sec

180°+θ ) θcot=(cot

360° θ ) θsin–=–(sin

360° θ ) θcos=–(cos

360° θ ) θtan–=–(tan

360° θ ) θcsc–=–(csc

360° θ ) θsec=–(sec

360° θ ) θcot–=–(cot

A a
b
---=tan

B 90° A–=

c a  Acsc=

A 90° B–=

a c  Asin=

b c  Acos=
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144. Oblique Plane Triangles

When solving an oblique plane triangle, it is often de-
sirable to draw a rough sketch of the triangle approximately 
to scale, as shown in Figure 144. The following laws are 
helpful in solving such triangles:

The unknown parts of oblique plane triangles can be 
computed by the formulas in Table 144, among others. By 
reassignment of letters to sides and angles, these formulas 
can be used to solve for all unknown parts of oblique plane 
triangles.

Figure 144. An oblique plane triangle.

Known To find Formula Comments

a, b, c A Cosine law

a, b, A B Sine law. Two solutions if b>a

C A + B + C = 180°

c Sine law

a, b, C A

B A + B + C = 180°

c Sine law

a, A, B b Sine law

C A + B + C = 180°

c Sine law

Table 144. Formulas for solving oblique plane triangles.

Acos
c

2
b

2
a

2
–+

2bc
-----------------------------=

Bsin
b Asin

a
--------------=

C 180° A B+( )–=

c
a Csin

Asin
---------------=

Atan
a Csin

b a Ccos–
-------------------------=

B 180° A C+( )–=

c a Csin
Asin

---------------=

b a Bsin
Asin

--------------=

C 180° A B+( )–=

c
a Csin

Asin
---------------=

Law of sines:      
a

Asin
------------

b

Bsin
------------

c

Csin
------------==

Law of cosines:   a
2

b
2

c
2

2bc  A.cos–+=
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SPHERICAL TRIGONOMETRY

145. Napier’s Rules

Right spherical triangles can be solved with the aid of 
Napier’s Rules of Circular Parts. If the right angle is 
omitted, the triangle has five parts: two angles and three 
sides, as shown in Figure 145a. Since the right angle is 
already known, the triangle can be solved if any two other 
parts are known. If the two sides forming the right angle, 
and the complements of the other three parts are used, these 
elements (called “parts” in the rules) can be arranged in five 
sectors of a circle in the same order in which they occur in 
the triangle, as shown in Figure 145b. Considering any part 
as the middle part, the two parts nearest it in the diagram are 
considered the adjacent parts, and the two farthest from it 
the opposite parts.

The following rules apply:
Napier’s Rules state: The sine of a middle part equals 

the product of (1) the tangents of the adjacent parts or (2) 
the cosines of the opposite parts.

In the use of these rules, the co-function of a comple-
ment can be given as the function of the element. Thus, the 
cosine of co–A is the same as the sine of A. From these rules 
the following formulas can be derived:

1. An oblique angle and the side opposite are in the 
same quadrant.

2. Side c (the hypotenuse) is less then 90° when a and 
b are in the same quadrant, and more than 90° when a and b
are in different quadrants.

If the known parts are an angle and its opposite side, 
two solutions are possible.

A quadrantal spherical triangle is one having one 
side of 90°. A biquadrantal spherical triangle has two 
sides of 90°. A triquadrantal spherical triangle has three 
sides of 90°. A biquadrantal spherical triangle is isosceles 
and has two right angles opposite the 90° sides. A triqua-
drantal spherical triangle is equilateral, has three right 
angles, and bounds an octant (one–eighth) of the surface of 
the sphere. A quadrantal spherical triangle can be solved by 
Napier’s rules provided any two elements in addition to the 
90° side are known. The 90° side is omitted and the other 
parts are arranged in order in a five–sectored circle, using 
the complements of the three parts farthest from the 90°
side. In the case of a quadrantal triangle, rule 1 above is 
used, and rule 2 restated: angle C (the angle opposite the side 
of 90°) is more than 90° when A and B are in the same quad-
rant, and less than 90° when A and B are in different 
quadrants. If the rule requires an angle of more than 90° and 
the solution produces an angle of less than 90°, subtract the 
solved angle from 180°.

146. Oblique Spherical Triangles

An oblique spherical triangle can be solved by 
dropping a perpendicular from one of the apexes to the 
opposite side, subtended if necessary, to form two right 
spherical triangles. It can also be solved by the following 
formulas in Table 146, reassigning the letters as 

Figure 145a. Parts of a right spherical triangle as used in 
Napier’s rules.

Figure 145b. Diagram for Napier’s Rules of 
Circular Parts.

 asin  b   Bcottan  c  Asinsin= =

 bsin  a  Acottan  c  Bsinsin= =

 ccos  A  Bcotcot  a  bcoscos= =

 Acos  b  ccottan  a  Bsincos= =

 Bcos  a  ccottan  b Asincos= =
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necessary.

147. . Other Useful Formulas

In addition to the fundamental trigonometric identities 
and reduction formulas given in Section 139, the following 
formulas apply to plane and spherical trigonometry: 

Addition and Subtraction Formulas

.

Double-Angle Formulas

.

Known To find Formula  Comments

a, b, C A tan D = tan a  cos C

B

c, A, B C

a tan E = tan A  cos c

b tan F = tan B  cos c

a, b, A c cot G = cos A  tan b 
Two solutions

B Two solutions

C

a, A, B C

b Two solutions

c

Table 146. Formulas for solving oblique spherical triangles.

Atan
D Ctansin

b D–( )sin
--------------------------=

Bsin
C bsinsin

csin
-----------------------=

Ccos A B c A Bcoscos–cossinsin=

atan
c Esintan
B E+( )sin

--------------------------=

btan
c Fsintan
A F+( )sin

---------------------------=

c G+( ) acos Gsin
bcos

------------------------=sin

sin B
Asin bsin

sin a
-----------------------=

C H+( )sin Hsin btan acot=
H Atan bcos=tan

Two solutions

C K–( )sin
Acos Ksin

Bcos
-------------------------=

Kcot Btan acos=
Two solutions

bsin  = 
asin Bsin

Asin
-----------------------

c M–( )sin Acot Btan Msin= Mtan B atancos=
Two solutions

θ φ+( )sin θsin φcos θcos φsin+=

θ φ+( )cos θcos φcos θsin φsin–=

θ φ–( )sin θsin φcos θcos φsin–=

θ φ–( )cos θcos φcos θsin φsin+=

θ φ+( )tan
θtan φtan+

1 θtan φtan–
--------------------------------=

2θsin 2 θsin θcos=

2θcos θ2
cos θ2

sin–=

2θtan
2 θtan

1 θ2
tan–

----------------------=
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Half-Angle Formulas

.

The following are useful formulas of spherical 
trigonometry: 

Law of Cosines for Sides

cos a = cos b cos c + sin b sin c cos A

cos b = cos c cos a + sin c sin a cos B

cos c = cos a cos b + sin a sin b cos C

Law of Cosines for Angles

cos A= - cos B cos C + sin B sin C cos a

cos B = - cos C cos A + sin C sin A cos b

cos C= - cos A cos B + sin A sin B cos c.

Law of Sines

 =  = .

Napier’s Analogies

.

Five Parts Formulas

sin a cos B = cos b sin c - sin b cos c cos A

sin b cos C= cos c sin a - sin c cos a cos B

sin c cos A= cos a sin b - sin a cos b cos C.

Haversine Formulas

hav a = hav (b ~ c) + sin b sin c hav A 

hav b = hav (a ~ c) + sin a sin c hav B 

hav c = hav (a ~ b) + sin a sin b hav C 

hav A= [hav a- hav (b ~ c)] csc b csc c

hav B = [hav b- hav (a ~ c)] csc a csc c 

hav C = [hav c- hav (a ~ b)] csc a csc b.

148. Functions of a Small Angle

 

Functions of a small angle: In Figure 148, small angle 
, measured in radians, is subtended by the arc RR' of a cir-

cle. The radius of the circle is r, and R' P is perpendicular to 
OR at P. Since the length of the arc of a circle is equal to the 
radius multiplied by the angle subtended in radians,

RR' = r × .

When  is sufficiently small for R'P to approximate 
RR',

since  and .

For small angles, it can also be shown that

θ
2
---sin

1 θcos–
2

---------------------±=

θ
2
---cos

1 θcos+
2

---------------------±=

θ
2
---tan

1 θcos–
1 θcos+
---------------------±=

asin
Asin

-----------
bsin
Bsin

-----------
csin
Csin

-----------

1
2
---tan A B+( )

1
2
---cos a b–( )

1
2
---cos a b+( )

----------------------------- 1
2
---cot C=

1
2
---tan A B–( )

1
2
---sin a b–( )

1
2
---sin a b+( )

---------------------------- 1
2
---cot C=

1
2
---tan a b+( )

1
2
---cos A B–( )

1
2
---cos A B+( )

------------------------------- 1
2
---tan c=

Figure 148. A small angle.

1
2
---tan a b–( )

1
2
---sin A B–( )

1
2
---sin A B+( )

------------------------------ 1
2
---tan c=

θ

θ
θ

θsin θ=

θ RR′
r

---------= θsin
R′P

r
---------=
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.

If there are x minutes of arc (x') in a small angle of 
radians,

.

Figure 148 also shows that when  is small, OP is ap-

proximately equal to the radius. Therefore, cos  can be 
taken as equal to 1. 

Another approximation can be obtained if cos  is ex-

pressed in terms of the half-angle:

.

CALCULUS

149. Calculus

Calculus is that branch of mathematics dealing with the 
rate of change of one quantity with respect to another.

A constant is a quantity which does not change. If a 
vessel is making good a course of 090°, the latitude does not 
change and is therefore a constant.

A variable, where continuous, is a quantity which can 
have an infinite number of values, although there may be 
limits to the maximum and minimum. Thus, from latitude 
30° to latitude 31 ° there are an infinite number of latitudes, 
if infinitesimally small units are taken, but no value is less 
than 30° nor more than 31°. If two variables are so related 
that for every value of one there is a corresponding value of 
the other, one of the values is known as a function of the 
other. Thus, if speed is constant, the distance a vessel 
steams depends upon the elapsed time. Since elapsed time 
does not depend upon any other quantity, it is called an in-
dependent variable. The distance depends upon the 
elapsed time, and therefore is called a dependent variable. 
If it is required to find the time needed to travel any given 
distance at constant speed, distance is the independent vari-
able and time is the dependent variable.

The principal processes of calculus are differentiation 
and integration.

150. Differentiation

Differentiation is the process of finding the rate of 
change of one variable with respect to another. If x is an in-
dependent variable, y is a dependent variable, and y is a 
function of x, this relationship may be written y = f(x). Since 
for every value of x there is a corresponding value of y, the 
relationship can be plotted as a curve, Figure 150 
. In this figure, A and B are any two points on the curve, a 
short distance apart.

The difference between the value of x at A and at B is 
x (delta x), and the corresponding difference in the value 

of y is y (delta y). The straight line through points A and 
B is a secant of the curve. It represents the rate of change 
between A and B for anywhere along this line the change of 

y is proportional to the change of x.

As B moves closer to A, as shown at B', both x and 

y become smaller, but at a different rate, and  changes. 

This is indicated by the difference in the slope of the secant. 
Also, that part of the secant between A and B moves closer 
to the curve and becomes a better approximation of it. The 
limiting case occurs when B reaches A or is at an infinites-
imal distance from it. As the distance becomes 
infinitesimal, both y and x become infinitely small, and 
are designated dy and dx, respectively. The straight line be-
comes tangent to the curve, and represents the rate of 
change, or slope, of the curve at that point. This is indicated 

by the expression , called the derivative of y with re-

spect to x.

The process of finding the value of the derivative is 
called differentiation. It depends upon the ability to con-

θtan θ=

θ

x′sin x 1′sin=

θ
θ

θ

θcos 1 2– 1
2
---

2
sin θ=

θcos 1 2–
1
2
---θ 
  2

=

θcos 1
1
2
---– θ2

=

Δ
Δ

Figure 150. Differentiation.

Δ

Δ Δy
Δx
------

Δ Δ

dy
dx
------
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nect x and y by an equation. For instance, if , 

. If , , and . This is de-

rived as follows: If point A on the curve is x, y; point B can 

be considered , . Since the relation  is 
true anywhere on the curve, at B:

.

Since , and equal quantities can be subtracted 
from both sides of an equation without destroying the 
equality:

.

Dividing by : 

.

As B approaches A,  becomes infinitesimally small, 

approaching 0 as a limit, Therefore  approached  as a 

limit.
This can be demonstrated by means of a numerical ex-

ample. Let . Suppose at A,  and , and at 

B,  and . In this case  and 

, and 

.

From the other side of the equation:

.

If  is 0.01 and  is 0.0401, . If  is 

0.001, ; and if  is 0.0001, . As 

 approaches 0 as a limit,  approaches 4, which is 

therefore the value . Therefore, at point A the rate of 

change of y with respect to x is 4, or y is increasing in value 
4 times as fast as x.

151. Integration

Integration is the inverse of differentiation. Unlike the 
latter, however, it is not a direct process, but involves the 
recognition of a mathematical expression as the differential 
of a known function. The function sought is the integral of 
the given expression. Most functions can be differentiated, 
but many cannot be integrated.

Integration can be considered the summation of an in-
finite number of infinitesimally small quantities, between 
specified limits. Consider, for instance, the problem of find-
ing an area below a specified part of a curve for which a 
mathematical expression can be written. Suppose it is de-
sired to find the area ABCD of Figure 151. If vertical lines 

are drawn dividing the area into a number of vertical strips, 
each  wide, and if y is the height of each strip at the mid-

point of , the area of each strip is approximately ; 
and the approximate total area of all strips is the sum of the 

areas of the individual strips. This may be written , 

meaning the sum of all y values between and . The 

symbol is the Greek letter sigma, the equivalent of the 

English S. If is made progressively smaller, the sum of 
the small areas becomes ever closer to the true total area. If 

 becomes infinitely small, the summation expression is 

written , the symbol dx denoting an infinitely small 

. The symbol , called the “integral sign,” is a distorted 

S.

An expression such as is called a definite in-

tegral because limits are specified (x1 and x2). If limits are 

not specified, as in , the expression is called an indef-

inite integral.
A navigational application of integration is the finding 

of meridional parts, Table 6. The rate of change of meridi-
onal parts with respect to latitude changes progressively. 
The formula given in the explanation of the table is the 
equivalent of an integral representing the sum of the merid-
ional parts from the equator to any given latitude.
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152. Differential Equations

An expression such as dy or dx is called a differential. 
An equation involving a differential or a derivative is called 
a differential equation.

As shown in Section 150, if , . Neither 

dy nor dx is a finite quantity, but both are limits to which 

and  approach as they are made progressively smaller. 

Therefore  is merely a ratio, the limiting value of , 

and not one finite number divided by another. However, 
since the ratio is the same as would be obtained by using fi-
nite quantities, it is possible to use the two differentials dy
and dx independently in certain relationships. Differential 
equations involve such relationships. 

Other examples of differential equations are:

d sin x = cos x dx      d csc x = - cot x csc x dx

d cos x= - sin x dx     d sec x = tan x sec x dx

d tan x = sec2 x dx     d cot x = - csc2 x dx.

Some differential equations indicating the variations in 
the astronomical triangle are:

dh = - cos L sin Z dt; L and d constant

dh = cos Z dL; d and t constant

dh = - cos h tan M dZ; L and d constant

dZ = - sec L cot t dL; d and h constant

dZ = tan h sin Z dL; d and t constant

dt = - sec L cot Z dL; d and h constant

dZ = cos d sec h cos M dt; L and d constant

dd = cos d tan M dt; L and h constant

dd = cos L sin t dZ; L and h constant,

where h is the altitude, L is the latitude, Z is the azimuth an-
gle, d is the declination, t is the meridian angle, and M is the 
parallactic angle.

y x
2

=
dy
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------ 2x=

Δy

Δx

dy
dx
------

Δy
Δx
------
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CHAPTER 2 

INTERPOLATION 

FINDING THE VALUE BETWEEN TABULATED ENTRIES

200. Introduction

When one quantity varies with changing values of a 
second quantity, and the mathematical relationship of the 
two is known, a curve can be drawn to represent the values 
of one corresponding to various values of the other. To find 
the value of either quantity corresponding to a given value 
of the other, one finds that point, on the curve defined by the 
given value, and reads the answer on the scale relating to 
the other quantity. This assumes, of course, that for each 
value of one quantity, there is only one value of the other 
quantity.

Information of this kind can also be tabulated. Each en-
try represents one point on the curve. The finding of value 
between tabulated entries is called interpolation. The ex-
tending of tabulated values to find values beyond the limits 
of the table is called extrapolation.

Thus, the Nautical Almanac tabulates values of decli-
nation of the sun for each hour of Coordinated Universal 
Time (UTC) or Universal Time (UT). The finding of decli-
nation for a time between two whole hours requires 
interpolation. Since there is only one entering argument (in 
this case UT), single interpolation is involved.

Table 11 gives the distance traveled in various times at 
certain speeds. In this table there are two entering argu-
ments. If both given values are between tabulated values, 
double interpolation is needed.

In Pub. No. 229, azimuth angle varies with a change in 
any of the three variables: latitude, declination, and local 
hour angle. With intermediate values of all three, triple in-
terpolation is needed.

Interpolation can sometimes be avoided. A table hav-
ing a single entering argument can be arranged as a critical 
table. An example is the dip (height of eye) correction on 
the inside front cover of the Nautical Almanac. Interpola-
tion is avoided through dividing the argument into intervals 
so chosen that successive intervals correspond to succes-
sive values of the required quantity, the respondent. For any 

value of the argument within these intervals, the respondent 
can be extracted from the table without interpolation. The 
lower and upper limits (critical values) of the argument cor-
respond to half-way values of the respondent and, by 
convention, are chosen so that when the argument is equal 
to one of the critical values, the respondent corresponding 
to the preceding (upper) interval is to be used. Another way 
of avoiding interpolation would be to include every possi-
ble entering argument. If this were done for Pub. No. 229, 
interpolation being eliminated for declination only, and as-
suming declination values to 0'.1, the number of volumes 
would be increased from six to more than 3,600. If interpo-
lation for meridian angle and latitude, to 0'.1, were also to 
be avoided, a total of more than 1,296,000,000 volumes 
would be needed. A more practical method is to select an 
assumed position to avoid the need for interpolation for two 
of the variables.

201. Single Interpolation

The accurate determination of intermediate values 
requires knowledge of the nature of the change between 
tabulated values. The simplest relationship is linear, the 
change in the tabulated value being directly proportional to 
the change in the entering argument. Thus, if a vessel is 
proceeding at 15 knots, the distance traveled is directly 
proportional to the time, as shown in Figure 201a. The same 
information might be given in tabular form, as shown in 
table 201b. Mathematically, this relationship for 15 knots is 

written , where D is distance in nautical miles, 

and t is time in minutes.

In such a table, interpolation can be accomplished by 
simple proportion. Suppose, for example, that the distance 
is desired for a time of 15 minutes. It will be some value be-
tween 3.0 and 4.0 miles, because these are the distances for 
12 and 16 minutes, respectively, the tabulated times on each 

D
15t
60
--------

t
4
---= =
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side of the desired time. 

The proportion might be formed as follows:

 

 (0.8 to the nearest 0.1 mi.)

 mi.

A simple interpolation such as this should be per-
formed mentally. During the four-minute interval between 
12 and 16 minutes, the distance increases 1.0 mile from 3.0 
to 4.0 miles. At 15 minutes, 3/4 of the interval has elapsed, 
and so the distance Increases 3/4 of 1.0 mile, or 0.75 mile, 
and is therefore 3.0+0.8=3.8, to the nearest 0.1 mile.

This might also have been performed by starting with 
16 minutes, as follows:

 (-0.2 to the nearest 0.1 mi.)

Mentally, 15 is one quarter of the way from 16 to 12, 
and therefore the distance is 1/4 the way between 4.0 and 
3.0, or 3.8.

This interpolation might have been performed by not-
ing that if distance changes 1.0 mile in four minutes, it must 

change  mile in  minute, or 24 seconds.

This relationship can be used for mental interpolation 
in situations which might seem to require pencil and paper. 
Thus, if distance to the nearest 0.1 mile is desired for 13m 
15s, the answer is 3.3 miles, determined as follows: The 

time 13m15s is 1m15s (1.2m approx.) more than 12m. If 1.2 
is divided by 0.4, the quotient is 3, to the nearest whole 
number. Therefore,  is added to 3, the tabulat-

ed value for 12 minutes. Alternatively, 13m15s is 2m45s 

(2.8m approx.) less than 16m, and , and there-

fore the interpolated value is  less than 4, the 

tabulated value for 16m. In either case, the interpolated val-
ue is 3.3 miles,

A common mistake in single interpolation is to apply 
the correction (x) with the wrong sign, particularly when it 
should be negative (-). This mistake can be avoided by al-
ways checking to be certain that the interpolated value lies 
between the two values used in the interpolation.

When the curve representing the values of a table is a 
straight line, as in a, the process of finding intermediate val-
ues in the manner described above is called linear 
interpolation. If tabulated values of such a line are exact 
(not approximations), as in Table 201b, the interpolation 
can be carried to any degree of precision without sacrificing 
accuracy. Thus, in 21.5 minutes the distance is 

Figure 201a. Plot of D = t / 4.

Minutes Miles

0 0.0

4 1.0

8 2.0

12 3.0

16 4.0

20 5.0

24 6.0

28 7.0

32 8.0

Table 201b. Table of D = t / 4

3
12

15

16

4

x
3.0

y

4.0

1.0

3
4
---

x
1.0
-------=

x
3 1.0×

4
---------------- 0.75= =

y 3.0 x+ 3.0 0.8+ 3.8= = =

1

12

15

16

4

-( )x

3.0

y

4.0

1.0

1
4
---

(-)x
1.0
---------=

x (-)0.25=

y 4.0 0.2– 3.8= =

1.0
10
------- 0.1=

4
10
------ 0.4=

3 0.1× 0.3=

2.8 0.4÷ 7=

7 0.1× 0.7=
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 miles. Similarly, for 29.9364 min-

utes the distance is  miles, a 

value which has little or no significance in practical naviga-
tion. If one had occasion to find such a value, it could most 
easily be done by dividing the time, in minutes, by 4, since 
the distance increases at the rate of one mile each four min-
utes. This would be a case of avoiding interpolation by 
solving the equation connecting the two quantities. For a 
simple relationship such as that involved here, such a solu-
tion might be easier than interpolation.

Many of the tables of navigation are not linear. Consid-
er Figure 201b. From Table 24 (Altitude Factors) it is found 
that for latitude 25° and declination 8°, same name, the 
variation of altitude in one minute of time from meridian 
transit (the altitude factor) is 6.0" (0.1'). For limited angular 
distance on each side of the celestial meridian, the change 

in altitude is approximately equal to at2, where a is the alti-
tude factor (from Table 24) and t is the time in minutes from 
meridian transit. Figure 201c is the plot of change in alti-
tude against time. The same information is shown in tabular 
form in Table 201d.

To be strictly accurate in interpolating in such a table, 
one should consider the curvature of the line. However, in 
most navigational tables the points on the curve selected for 
tabulation are sufficiently close that the portion of the curve 
between entries can be considered a straight line without in-
troducing a significant error. This is similar to considering 
the line of position from a celestial observation as a part of 
the circle of equal altitude. Thus, to the nearest 0.1’, the 
change of altitude for 3.4 minutes is 

. The correct value by 
solution of the formula is 1.156’. The value for 6.8 minutes 
is 4.6’ by interpolation and 4.624’ by computation.

Section 204 (Nonlinear Interpolation) addresses the 
nonlinear interpolation used when the curve representing 
tabular values under consideration is not a close approxima-
tion to a straight line. However, such instances are 
infrequent in navigation, and generally occur at a part of the 
navigation table that is not commonly used, or for which 
special provisions are made. For example, in Pub. No. 229
nonlinear interpolation may be required only when the alti-
tude is above 60°. Even when the altitude is above 60°, the 
need for nonlinear interpolation is infrequent. When it is 
needed, such fact is indicated by the altitude difference be-
ing printed in italic type followed by a small dot.

202. Double Interpolation

In a double-entry table it may be necessary to 
interpolate for each entering argument. Table 202a is an 
extract from Table 22 (amplitudes). If one entering 
argument is an exact tabulated value, the amplitude can be 
found by single interpolation. For instance, if latitude is 45° 
and declination is 21.8°, amplitude is 

. However, if 

neither entering argument is a tabulated value, double 
interpolation is needed. This may be accomplished in any of 
several ways:

Figure 201c. Plot of altitude change = at2.

Minutes Miles

0 0.0

1 0.1

2 0.4

Table 201d. Table of altitude change = at2, where a=0.1’.

5.0
1.5
4

-------+ 1.0× 5.375=

7.0
1.9364

4
----------------+ 1.0× 7.4841=

3 0.9

4 1.6

5 2.5

6 3.6

7 4.9

8 6.4

Lat.
Declination

21.5° 22.0°

Table 202a. Excerpts from amplitude table.

Table 201d. Table of altitude change = at2, where a=0.1’.

0.9′ 0.4 0.7′×( )+ 0.9′ 0.3′+ 1.2′= =

31.2° 3
5
--- 0.8°× 
 + 31.2° 0.5°+ 31.7°= =
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“Horizontal” method. Use single interpolation for dec-
lination for each tabulated value of latitude, followed by 
single interpolation for latitude. Suppose latitude is 45.7° 
and declination is 21.8°. First, find the amplitude for lati-
tude 45°, declination 21.8°, as above, 31.7°. Next, repeat 

the process for latitude 46°: . Fi-

nally, interpolate between 31.7° and 32.3° for latitude 

45.7°: . This is the equivalent of 

first inserting a new column for declination 21.8°, followed 
by single interpolation in this column, as shown in Table 
202b.

“Vertical” method. Use single interpolation for lati-
tude for each tabulated value of declination, followed by 
single interpolation for declination. Consider the same ex-
ample as above. First, find the amplitude for declination 

21.5°, latitude 45.7°: . Next, 

repeat the process for declination 22.0°: 

. Finally, interpolate between 

31.6° and 32.4° for declination 21.8°: 

. This is the equivalent of first in-

serting a new line for latitude 45.7°, followed by single 
interpolation in this line, as shown in Table 202c.

“Combined” method. Select a tabulated “base” value, 
preferably that nearest the given tabulated entering argu-
ments. Next, find the correction to be applied, with its sign, 
for single interpolation of this base value both horizontally 
and vertically. Finally, add these two corrections algebra-
ically and apply the result, in accordance with its sign, to 
the base value, In the example given above, the base value 
is 32.6°, for declination 22.0° (21.8° is nearer 22.0° than 
21.5°) and latitude 46° (45.7° is nearer 46° than 45°). The 

correction for declination is . The cor-

rection for latitude is . The algebraic 

sum is . The interpolated value is 

then . This is the method customarily 
used by navigators, however, it is also less precise. If more 
accuracy is required more tedium must be exercised using 
the horizontal or vertical methods.

203. Triple Interpolation

With three entering arguments, the process is similar to 
that for double interpolation. It would be possible to 
perform double interpolation for the tabulated value on 
each side of the given value of one argument, and then 
interpolate for that argument, but the method would be 
tedious. The only method commonly used by navigators is 
that of selecting base value and applying corrections.

204. Nonlinear Interpolation

When the curve representing the values of a table is 
nearly a straight line, or the portion of the curve under 
consideration is nearly a straight line, linear interpolation 
suffices. However, when the successive tabular values are 
so nonlinear that a portion of the curve under consideration 
is not a close approximation to a straight line, it is necessary 
to include the effects of second differences, and possibly 
higher differences, as well as first differences in the 
interpolation.

The plot of Table 204b data in Figure 204a indicates 
that the altitude does not change linearly between declina-
tion values of 51° and 52°. If the first difference only were 
used in the interpolation, the interpolated value of altitude 
would lie on the straight line between points on the curve 
for declination values of 51° and 52°.

° ° °

45 31.2 32.0

46 31.8 32.6

Lat.
Declination

21.5° 21.8° 22.0°

° ° ° °

45 31.2 31.7 32.0

45.7 32.1

46 31.8 32.3 32.6

Table 202b. “Horizontal” method of double interpolation.

Lat.
Declination

21.5° 21.8° 22.0°

° ° ° °

Table 202c. “Vertical” method of double interpolation.

Table 202a. Excerpts from amplitude table.

31.8° 3
5
--- 0.8°× 
 + 32.3°=

31.7° 0.7 0.6°×( )+ 32.1°=

31.2° 0.7° 0.6°×( )+ 31.6°=

32.0° 0.7° 0.6°×( )+ 32.4°=

31.6° 3
5
--- 0.8°× 
 + 32.1°=

45 31.2 32.0

45.7 31.6 32.1 32.4

46 31.8 32.6

Table 202c. “Vertical” method of double interpolation.

2
5
--- (-)0.8°× (-)0.3°=

0.3° (-)0.6°× (-)0.2°=

(-)0.3° (-)0.2°+ (-)0.5°=

32.6° 0.5°– 32.1°=
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If the altitude for declination 51°30' is obtained using 
only the first difference, i.e., the difference between suc-
cessive tabular altitudes in this case, 

. However, inspec-

tion of Figure 204a reveals that this interpolated altitude is 

0.3’ low. If the tabular data were such that the differences 
between successive first differences, the second differenc-
es, were nearly zero, interpolation using the first difference 
only would provide the correct altitude. In this case, how-
ever, second differences are significant and must be 
included in the interpolation. 

Table 204c shows the format and notation used to dis-
tinguish the various tabular quantities and differences when 
using Bessel's formula for the nonlinear interpolation. The 
quantities ƒ-2, ƒ-1, ƒ0, ƒ+1, ƒ+2, ƒ+3 represents represent suc-
cessive tabular values. 

Allowing for first and second differences only, Bes-
sel’s formula is stated as:

In this case, ƒp is the computed altitude; ƒ0 is the tabu-
lar altitude; p is the fraction of the interval between tabular 
values of declination. The quantity B2 is a function of p and 
is always negative. This coefficient is tabulated in Table 

204d. The quantity is the double second differ-

ence (DSD), which is the sum of successive second 
differences.

Applying Bessel's formula to the data of table 205a to 
obtain 'the altitude for a declination of 51°30',

Figure 204a. Altitude curve.

LHA 38°, Lat. 45° (Same as Dec.)

Dec. ht (Tab. Hc)
First 

Difference
Second 

Difference

50° 64°08.2’

+2.8’

51° 64°11.0’ -2.3’

+0.5’

52° 64°11.5’ -2.1’

-1.6’

53° 64°09.9’

Table 204b. Data from Pub. No. 229.

Hc 64°11.0′ 30′
60′
-------+ 0.5′× 64°11.3′= =

Function
First 

Difference
Second 

Difference

ƒ-2

ƒ-1

ƒ0

ƒ+1

ƒ+2

Table 204c. Notation used with Bessel’s Formula.

δ
2

2–

δ 3– 2⁄

δ
2

1–

δ 1– 2⁄

δ2
0

δ1 2⁄

δ2
1

δ3 2⁄

δ3
2

fp f0 pδ1 2⁄ B2 δ2
0 δ2

1+ 
 + +=

δ2
0 δ2

1+ 
 
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205. Interpolation Tables

A number of frequently used navigation tables are 
provided with auxiliary tables to assist in interpolation. 
Table 1 (Logarithms of Numbers) provides columns of “d” 
(difference between consecutive entries) and auxiliary 
"proportional parts" tables. The auxiliary table for the 
applicable difference “d” is selected and entered with the 

digit of the additional place in the entering argument. The 
value taken from the auxiliary table is added to the base 
value for the next smaller number from the main table. 
Suppose the logarithm (mantissa) for 32747 is desired. The 
base value for 3274 is 51508, and “d” is 13. The auxiliary 
table for 13 is entered with 7, and the correction is found to 
be 9. If this is added to 51508, the interpolated value is 
found to be 51517. This is the same result that would be 

fp f0 pδ1 2⁄ B2 δ2
0 δ2

1+ 
 + += Hc 64°11.0′ 30′

60′
------- 
  0.5′( ) 0.062–( ) 2.3′– 2.1′–( )+[ ]+ +=

Hc 64°11.0′ 0.3′ 0.3′ 64°11.6′=+ +=

p B2 p B2 p B2 p B2 p B2

0.0000
.000

0.1101
.025

0.2719
.050

0.7280
.049

0.8898
.024

.0020
.001

.1152
.026

.2809
.051

.7366
.048

.8949
.023

.0060
.002

.1205
.027

.2902
.052

.7449
.047

.9000
.022

.0101
.003

.1258
.028

.3000
.053

.7529
.046

.9049
.021

.0142
.004

.1312
.029

.3102
.054

.7607
.045

.9098
.020

.0183
.005

.1366
.030

.3211
.055

.7683
.044

.9147
.019

.0225
.006

.1422
.031

.3326
.056

.7756
.043

.9195
.018

.0267
.007

.1478
.032

.3450
.057

.7828
.042

.9242
.017

.0309
.008

.1535
.033

.3585
.058

.7898
.041

.9289
.016

.0352
.009

.1594
.034

.3735
.059

.7966
.040

.9335
.015

.0395
.010

.1653
.035

.3904
.060

.8033
.039

.9381
.014

.0439
.011

.1713
.036

.4105
.061

.8098
.038

.9427
.013

.0483
.012

.1775
.037

.4367
.062

.8162
.037

.9472
.012

.0527
.013

.1837
.038

.5632
.061

.8224
.036

.9516
.011

.0572
.014

.1901
.039

.5894
.060

.8286
.035

.9560
.010

.0618
.015

.1966
.040

.6095
.059

.8346
.034

.9604
.009

.0664
.016

.2033
.041

.6264
.058

.8405
.033

.9647
.008

.0710
.017

.2101
.042

.6414
.057

.8464
.032

.9690
.007

.0757
.018

.2171
.043

.6549
.056

.8521
.031

.9732
.006

.0804
.019

.2243
.044

.6673
.055

.8577
.030

.9774
.005

.0852
.020

.2316
.045

.6788
.054

.8633
.029

.9816
.004

.0901
.021

.2392
.046

.6897
.053

.8687
.028

.9857
.003

.0950
.022

.2470
.047

.7000
.052

.8741
.027

.9898
.002

.1000
.023

.2550
.048

.7097
.051

.8794
.026

.9939
.001

.1050
.024

.2633
.049

.7190
.050

.8847
.025

0.9979
.000

0.1101 0.2719 0.7280 0.8898 1.0000

Table 204d. Bessel’s Coefficient B2. In critical cases ascend. B2 is always negative.
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obtained by subtracting 51508 from 51521 (the logarithm 
for 3275) to obtain 13, multiplying this by 0.7, and adding 
the result (9) to 51508.

Tables 1 (Logarithms of Numbers) and Table 2 (Natu-
ral Trigonometric Functions) provide the difference 
between consecutive entries, but no proportional parts 
tables.

The Nautical Almanac “Increments and Corrections” 
are interpolation tables for the hourly entries of Greenwich 
Hour Angle (GHA) and declination. The increments are the 
products of the constant value used as the change of GHA 
in 1 hour and the fractional part of the hour. The corrections 
provide for the difference between the actual change of 
GHA in 1 hour and the constant value used. The corrections 
also provide the product of the change in declination in 1 
hour and the fractional part of the hour.

The main part of the four-page interpolation table of 
Pub. No. 229 is basically a multiplication table providing 
tabulations of:

The design of the table is such that the desired product 
must be derived from component parts of the altitude differ-
ence. The first part is a multiple of 10' (10', 20', 30', 40', or 
50') of the altitude difference; the second part is the remain-
der in the range 0.0’ to 9.9’. For example, the component 
parts of altitude difference 44.3’ are 40' and 4.3’.

In the use of the first part of the altitude difference, the 
table arguments are declination increment (Dec. Inc.) and 
the integral multiple of 10' in the altitude difference, d. As 
shown in Figure 205a, the respondent is:

.

In the use of the second part of the altitude difference, 
the interpolation table arguments are the nearest Dec. Inc. 
ending in 0.5’ and Units and Decimals. The respondent is:

.

In computing the table, the values in the Tens part of 
the multiplication table were modified by small quantities 
varying from -0.042’ to +0.033’ before rounding to the tab-
ular precision to compensate for any difference between the 
actual Dec. Inc. and the nearest Dec. Inc. ending in 0.5’ 
when using the Units and Decimals part of the table.

Using the interpolation table shown in Figure 205b to 
obtain the altitude for 51°30' from the data of Table 204b
(Data from Pub. No. 229), the linear correction for the first 
difference (+0.5’) is +0.3’. This correction is extracted from 
the Units and Decimals block opposite the Dec. Inc. (30.0’). 

The correction for the double second difference (DSD) is 
extracted from the DSD subtable opposite the block in 
which the Dec. Inc. is found. The argument for entering this 
critical table is the DSD (-4.4’). The DSD correction is 
+0.3’. Therefore,

.

More on Second Differences using Pub 229. The ac-
curacy of linear interpolation usually decreases as the 
altitude increases. At altitudes above 60° it may be neces-
sary to include the effect of second differences in the 
interpolation. When the altitude difference, d, is printed in 
italic type followed by a small dot, the second-difference 
correction may exceed 0.25’, and should normally be ap-
plied. The need for a second-difference correction is 
illustrated by the graph of Table 205c data in Figure 205d.

Altitude Difference
Declination Increment

60′
-----------------------------------------------------×

Tens
Dec. Inc.

60′
---------------------×

Units and Decimals
Dec. Inc.

60′
---------------------×

Figure 205a. Interpolation table.

Figure 205b. Interpolation table.

LHA 28°, Lat. 15° (Same as Dec.)

Table 205c. Data from Pub. No. 229.

Hc ht first difference correction DSD correction+ +=

64°11.0′ 0.3′ 0.3′ 64°11.6′=+ +=
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Other than graphically, the required correction for the 
effects of second differences is obtained from the appropri-
ate subtable of the Interpolation Table. However, before the 
Interpolation Table can be used for this purpose, what is 
known as the double-second difference (DSD) must be 
formed.

Forming the Double-Second Difference (DSD). The 
double-second difference is the sum of two successive sec-
ond differences. Although second differences are not 
tabulated, the DSD can be formed readily by subtracting, 
algebraically, the tabular altitude difference immediately 
above the respondent altitude difference from the tabular al-
titude difference immediately below. The result will always 
be a negative value.

The Double-Second Difference Correction. As 
shown in Figure 205a, that compartment of the DSD table 
opposite the block in which the Dec. Inc. is found is entered 
with the DSD to obtain the DSD correction to the altitude. 
The correction is always plus. Therefore, the sign of the 
DSD need not be recorded. When the DSD entry corre-
sponds to an exact tabular value, always use the upper of the 
two possible corrections.

Example of the Use of the Double-Second Differ-
ence. As an example of the use of the double-second 
difference (DSD) the computed altitude and true azimuth 
are determined for Lat. 15°N, LHA 28°, and Dec. 
16°30.0’N. Data are exhibited in Figure 205a.

The respondents for the entering arguments (Lat. 15° 
Same Name as Declination, LHA 28°, and Dec. 16°) are:

The linear interpolation correction to the tabular alti-
tude for Dec. Inc. 30.0’ is (+)0.4’.

However, by inspection of Figure 205d, illustrating 
this solution graphically, the computed altitude should be 
63°01.9’. The actual change in altitude with an increase in 
declination is nonlinear. The altitude value lies on the curve 
between the points for declination 16° and declination 17° 
instead of the straight line connecting these points.

The DSD is formed by subtracting, algebraically, the 
tabular altitude difference immediately above the respon-
dent altitude difference from the tabular altitude difference 
immediately below. Thus, the DSD is formed by algebra-
ically subtracting (+)2.8’ from (-)1.3’; the result is (-)4.1’.

As shown in Figure 205f, that compartment of the DSD 
table opposite the block in which the Dec. Inc. (30.0’) is 
found is entered with the DSD (4.1’) to obtain the DSD cor-
rection to the altitude. The correction is 0.3’. The correction 
is always plus.

Extrapolation.-The extending of a table is usually per-
formed by assuming that the difference between the last 
few tabulated entries will continue at the same rate. This as-
sumption is strictly correct only if the change is truly linear, 
but in most tables the assumption provides satisfactory re-
sults for a slight extension beyond tabulated values. The 
extent to which the assumption can be used reliably can of-

Dec. ht (Tab. Hc)
First 

Difference
Second 

Difference

15° 62°58.4’

+2.8’

16° 63°01.2’ -2.0’

+0.8’

17° 63°02.0’ -2.1’

-1.3’

18° 63°00.7’

Figure 205d. Graph of Table 205c Data.

Table 205c. Data from Pub. No. 229.

tabular altitude, ht 63°01.2’

altitude difference, d (+)0.8’

azimuth angle, Z 84.1°

Table 205e

Hc ht linear correction DSD correction+ +=

Hc ht linear correction DSD correction+ +=

Hc 63°01.2′ 0.4′ 0.3′ 63°01.9′=+ +=
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ten be determined by noting the last few differences. If the 
“second differences” (differences between consecutive dif-
ferences) are nearly zero, the curve is nearly a straight line, 
for a short distance. But if consecutive second differences 
are appreciable, extrapolation is not reliable. For examples 
of linear and nonlinear relationships, refer to the first page 
of Table 3 (Common Logarithms of Trigonometric Func-
tions) and compare the tabulated differences of the 
logarithms of secant (approximately linear on this page) 
and sine (nonlinear on this page).

As an example of extrapolation, consider Table 22 
(Amplitudes). Suppose the amplitude for latitude 45°, dec-
lination 24.3° is desired. The last declination entry is 24.0°. 
The amplitude for declination 23.5° is 34.3°, and for decli-
nation 24.0° it is 35.1°. The difference is (+) 0.8°. 
Assuming this same difference between declinations 24.0° 
and 24.5°, one finds the value for 24.3° is 

. Below latitude 50° this table is 

so nearly linear that extrapolation can be carried to declina-
tion 30° without serious error. 

For double or triple extrapolation, differences are 
found as in single interpolation.

206. General Comments

As a general rule, the final answer should not be given 
to greater precision than tabulated values. A notable 
exception to this rule is the case where tabulated values are 
known to be exact, as in Table 201b. A slight increase in 
accuracy can sometimes be attained by retaining one 
additional place in the solution until the final answer. 
Suppose, for instance, that the corrections for triple interpo-
lation are (+)0.2, (+)0.3, and (-)0.3. The total correction is 
(+)0.2. If the total correction, rounded to tenths, had been 
obtained from the sum of (+)0.17, (+)0.26, and (-)0.34, the 

correct total would have been (+)0.09= (+)0.1. The 
retaining of one additional place may be critical if the 
correction factors end in 0.5. Thus, in double interpolation, 
one correction value might be (+)0.15, and the other (-
)0.25. The correct total is (-)0.1. But if the individual 
differences are rounded to (+)0.2 and (-)0.2, the total is 0.0.

The difference used for establishing the proportion is 
also a matter subject to some judgment. Thus, if the latitude 
is 17°14.6’, it might be rounded to 17.2° for many purposes. 
Slightly more accurate results can sometimes be obtained 

by retaining the minutes, using  instead of 0.2. If the 

difference to be multiplied by this proportion is small, the 
increase in accuracy gained by using the more exact value 
is small, but if the difference is large, the gain might be con-
siderable. Thus, if the difference is 0.2°, the correction by 

using either  or 0.2 is less than 0.05°, or 0.0° to the 

nearest 0.1°. But if the difference is 3.2°, the value by 

is 0.8°, and the value by 0.2 is 0.6°. 
If the tabulated entries involved in an interpolation are 

all positive or all negative, the interpolation can be carried 
out on either a numerical or an algebraic basis. Most navi-
gators prefer the former, carrying out the interpolation as if 
all entries were positive, and giving to the interpolated val-
ue the common sign of all entries. When both positive and 
negative entries are involved, all differences and correc-
tions should be on an algebraic basis, and careful attention 
should be given to signs. Thus, if single interpolation is to 
be performed between values of (+)0.9 and (-)0.4, the dif-
ference is 0. If the correction 
is 0.2 of this difference, it is (-)0.3 if applied to (+)0.9, and 
(+)0.3 if applied to (-)0.4. In the first case, the interpolated 
value is . In the second case, it is 

. If the correction had been 0.4 of the 

Figure 205f. Interpolation blocks from Pub No. 229.

35°
·
1

3
5
--- 0.8°× 
 + 35.6°=

14.6
60

----------

14.6
60

----------

14.6
60

----------

0.9 0.4–( )– 0.9 0.4+ 1.3= =

(+)0.9 0.3– (+)0.6=

(-)0.4 + 0.3 (-)0.1=
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difference, it would have been (-)0.5 in the first case, and 
(+)0.5 in the second. The interpolated value would have 

been , or , 

respectively.

Because of the variety in methods of interpolation 

used, solutions by different persons may differ slightly. (+)0.9 - 0.5 (+)0.4= (-)0.4 + 0.5 (+)0.1=
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CHAPTER 3 

NAVIGATIONAL ERRORS

DEFINING NAVIGATIONAL ERRORS

300. Introduction

As commonly practiced, navigation is not an exact 
science. A number of approximations which would be 
unacceptable in careful scientific work are used by the 
navigator, because greater accuracy may not be consistent 
with the requirements or time available, or because there is 
no alternative.

Thus, when the navigator uses his latitude graduations 
as a mile scale or computes a great-circle course and 
distance, s/he neglects the flattening of the earth at the 
poles, a practice that is not acceptable to the geodetic 
surveyor. When the navigator plots a visual bearing or an 
azimuth line for a celestial line of position, s/he uses a 
rhumb line to represent a great circle on a Mercator chart. 
When s/he plots the celestial line of position, s/he 
substitutes a rhumb line for a small circle. When the 
navigator interpolates in sight reduction or lattice tables, 
s/he assumes a linear (constant-rate) change between 
tabulated values. When s/he measures distance by radar or 
depth by echo sounder, s/he assumes that the radio- or 
sound-wave has constant speed under all conditions. When 
the navigator applies dip and refraction corrections to his or 
her sextant altitude, s/he generally assumes standard 
atmospheric conditions. These are only a few of the approx-
imations commonly applied by a navigator.

There are so many that there is a natural tendency for 
some of them to cancel others. Thus, under favorable 
conditions, a position at sea determined from celestial 
observation by an experienced observer should seldom be 
in error by more than 2 miles. However, if the various small 
errors in a particular observation all have the same sign (all 
plus or all minus), the error might be several times this 
amount without any mistake having been made by the 
navigator.

Greater accuracy could be attained, but at a price. The 
navigator is a practical individual. In the course of ordinary 
navigation, s/he would rather spend 10 minutes 
determining a position having a probable error of plus or 
minus 2 miles, than to spend several hours learning where 
s/he was to an accuracy of a few meters. But if the navigator 
can determine a recent or present position to greater 
accuracy, the decrease in error is attractive. The various 
navigational aids have been designed with this in mind. 
Greater accuracy in plotting could be achieved by 
increasing the scale of the chart or plotting sheet. This has 

been done for confined waters where a higher degree of 
accuracy is needed, but a large scale plotting sheet would be 
a nuisance at sea. The hand-held marine sextant is not 
sufficiently accurate for use in determining an astronomical 
position in a geodetic survey. But, it is much more 
satisfactory at sea than the surveyor's astrolabe or 
theodolite, which require stable platforms if their potential 
accuracy is to be realized. 

An understanding of the kinds of errors involved in 
navigation, and of the elementary principles of probability, 
should be of assistance to a navigator in interpreting his or 
her results.

301. Definitions

The following definitions apply to the discussions of 
this chapter:

Error is the difference between a specific value and the 
correct or standard value. As used here it does not include mis-
takes, but is related to lack of perfection. Thus, an altitude 
determined by marine sextant is corrected for a standard 
amount of refraction, but if the actual refraction at the time of 
observation varies from the standard, the value taken from the 
table is in error by the difference between standard and actual 
refraction. This error will be compounded with others in the 
observed altitude. Similarly, depth determined by echo sound-
er is in error, among other things, by the difference between the 
actual speed of sound waves in the water and the speed used 
for calibration of the instrument. The depth will also be in error 
if an echo is returned from a phantom bottom instead of from 
the actual bottom. This chapter is concerned primarily with the 
deviation from standards. Thus, while variation of the compass 
is an error when referred to true directions, the difference be-
tween the assumed variation and that actually existing is an 
error with reference to magnetic direction. Corrections can be 
applied for standard values of error. It is the deviation from 
standard, as well as mistakes, that produce inaccurate results in 
navigation. Various kinds of errors are discussed in the follow-
ing articles. 

Mistake is a blunder, such as an incorrect reading of an 
instrument, the taking of a wrong value from a table, or the 
plotting of a reciprocal bearing. The mistake is discussed in 
more detail in Section 312. 

Standard is something established by custom, 
agreement, or authority as a basis for comparison. It is 
customary to use nautical miles for measuring distances 
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between ports. By international agreement the nautical mile 
is defined as exactly 1852 meters. By authority of various 
countries which are parties to the agreement, this length is 
translated to the linear units adopted by that country. It is the 
fact of establishment or general acceptance that determines 
whether a given quantity or condition has become a standard 
of measure or quality. 

Thus, in 1960, the standard unit of length agreed upon 
at the Eleventh General (International) Conference on 
Weights and Measures to redefine the meter was 
1,650,763.73 wavelengths of the orange-red radiation in 
vacuum of krypton 86 corresponding to the unperturbed 
transition between the 2p10 and 5d5 levels. This established 
standard of length now serves as a basis for measurement of 
any physical magnitude, as the length of the meridian. Mul-
tiples and submultiples of a standard are exact. In 1959, the 
U.S. adopted the exact relationships of 1 yard as equal to 
0.9144 meter and 1 inch as equal to 2.54 centimeters. Hence, 
39.37 U.S. inches are approximately equal to 1 meter. Be-
cause 1 foot equals 12 inches by definition, and the 
international nautical mile has been defined as 1852 meters, 
the international nautical mile is equal to 6,076.11549 U.S. 
feet (approximately). The previous U.S. foot (6,076.10333 . 
feet equals 1 nautical mile) has been re-designated as the 
U.S. survey foot.

Frequently, a standard is chosen so that it serves as a 
model which approximates a mean or average condition. 
However, the distinction between the standard value and 
the actual value at any time should not be forgotten. Thus, 
a standard atmosphere has been established in which the 
temperature, pressure, density, etc., are precisely specified 
for each altitude. Actual conditions, however, are generally 
different from those defined by the standard atmosphere. 
Similarly, the values for dip given in the almanacs are con-
sidered standard by those who use them, but actual dip may 
be appreciably different from that tabulated.

Accuracy is the degree of conformance with the 
correct value, while precision is the degree of refinement of 
a value. Thus, an altitude determined by a marine sextant 
might be stated to the nearest 0.1', and yet be accurate only 
to the nearest 1.0' if the horizon is indistinct.

302. Systematic Errors

Systematic errors are those which follow some law by 
which they can be predicted. The accuracy with which a 
systematic error can be predicted depends upon the 
accuracy with which the governing law is understood. An 
error which can be predicted can be eliminated, or compen-
sation can be made for it.

The simplest form of systematic error is one of un-
changing magnitude and sign. This is called a constant 
error. Examples are the index error of a marine sextant, 
watch error, or the error resulting from a lubber's line not 
being accurately aligned with the longitudinal axis of the 
craft. In each of these cases, all readings are in error by a 

constant amount as long as the adjustment remains un-
changed, and can be removed by applying a correction of 
equal magnitude and opposite sign. Index error and watch 
error can be removed by adjustment of the instrument. Lub-
ber's line error can be removed by aligning the lubber's line 
with the longitudinal axis of the craft.

Another type of systematic error results from a non-
standard rate. If a watch is gaining 4 seconds per day, its 
readings will be in error by 1 second after an interval of 6 
hours, 8 seconds at the end of 2 days, etc. This principle is 
used in establishing a chronometer rate (Section 1608, Vol-
ume 1, 2017 edition) for determination of chronometer 
error between comparisons of the chronometer with time 
signals. It can be eliminated by adjusting the rate. If a cur-
rent is running and no allowance for it is made in the dead
reckoning, the DR position is in error by an amount propor-
tional to elapsed time. The error introduced by maintaining 
heading by means of an inaccurate compass is proportional 
to distance, as is the lateral error in a line of position plotted 
from an inaccurate bearing.

One of the causes of equation of time (Section 1601, 
Volume 1, 2017 edition) is the fact that the ecliptic, around 
which annual motion occurs, is not parallel to the celestial 
equator, around or parallel to which apparent daily motion 
takes place. The same type of systematic error is involved 
in other measurements. Consider the measurement of bear-
ing with a tilted compass card. Bearing is measured by a 
system of uniform graduations (degrees) of a circle (such as 
a compass card) in the horizontal plane. If the card is tilted, 
and its graduations are projected onto the horizontal plane, 
the circle becomes an ellipse with the graduations unequal-
ly spaced. Along the axis of tilt and a line perpendicular to 
it, directions are correct. But near the axis of tilt the gradu-
ations are too close together, and near the perpendicular 
they are too widely spaced. 

The error thus introduced is similar to that which 
would arise if a watch face were tilted but the motion of the 
hands remained horizontal. If it were tilted around the “3-
9” line, it would appear to run slow near the hour and half 
hour, and fast near the quarter and three-quarter hours. If 
the direction to be observed is of an object above or below 
the horizontal, as the azimuth of a celestial body, measure-
ment is made to the foot of the perpendicular through the 
object. 

The sight vanes of a compass move in a plane perpen-
dicular to the compass card. Hence, if the card is tilted, 
measurement is made to the foot of a perpendicular to the 
card, rather than to the foot of a perpendicular to the hori-
zontal, introducing an error which increases with the angle 
of tilt and also with the angle of elevation (or depression) of 
the object. This error is greatest along the axis of tilt, and 
zero along the perpendicular to it. Both of these tilt errors 
can be corrected by leveling the compass card.

A different type of tilt error occurs when a reflection 
takes place from a tilted surface, such as the ionosphere, the 
error being proportional to the angle of tilt. In some re-
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spects, this error is similar to coastal refraction of a radio 
wave.

Additional examples of systematic error are uncorrect-
ed deviation of the compass, error due to a position in a 
pattern of hyperbolas, error due to incorrect location of a 
Loran transmitter, uncorrected parallax, and uncorrected 
personal error.

303. Random Errors

Random errors are chance errors, unpredictable in 
magnitude or sign. They are governed by the laws of 
probability. If the altitude of a celestial body is observed, the 
reading may be (1) too great, (2) correct, or (3) too small. If a 
number of observations are made, and there is no systematic 
error, the probability of a positive error is exactly equal to the 
probability of a negative error. This does not mean that every 
second observation having an error will be too great. However, 
the greater the number of observations, the greater is the 
probability that the percentage of positive errors will equal the 
percentage of negative ones, and that their magnitudes will 
correspond.

Suppose that 500 observations are made, with the re-
sults shown in Table 303. A close approximation of the plot 
of these errors is shown in Figure 303a. The plot has been 
modified slightly to constitute the normal curve of random 
errors, which is the same as the actual curve except that the 
normal curve approaches zero as the error increases, while 
the actual curve reaches zero at (+)10' and (-)10'. The height 

of the curve at any point represents the percentage of obser-
vations that can be expected to have the error indicated at 
that point. The probability of any similar observation hav-
ing any given error is the proportion of the number of 
observations having this error to the total number of obser-
vations, or the percentage expressed as a decimal. Thus, the 
probability of an observation having an error of -3' is 

If the area under the curve represents 100 percent of the 
observations, half the area (the shaded portion of Figure 
303c) represents 50 percent of the observations. The value 
of the error at the limits of this shaded portion is often called 
the “50 percent error,” or probable error, meaning that 50 
percent of the observations can be expected to have less er-
ror, and 50 percent greater error. Similarly, the limits which 
contain the central 95 percent of the area denote the 95 per-
cent error. The percentage of error is found mathematically. 
For a normal curve, each error is squared, the sum of the 
squares is divided by one less than the number of observa-
tions, and the square root of the quotient is determined. This 
value is called the standard deviation or standard error
( , the Greek letter sigma). In the illustration, the standard 
deviation is the square root of

divided by 499 or

The standard deviation is the 68.27 percent error. The 
probability of the occurrence of an error of or less than a 
specific magnitude may be approximately determined by the 
following relationship (with the answers for the illustration 
given):

50% error = 2/3 x  = 2' (approx.)

68% error = 1 x  = 3' (approx.)

95% error = 2 x  = 6' (approx.)

99% error = 2 2/3 x  = 8' (approx.)

99.9% error =3 1/3 x  = 10' (approx.)
Many of the errors of navigation do not follow the 

normal distribution discussed above. Pub. No. 229 val-
ues of altitude can be taken only to the nearest 0.1'. The 
error in tabular altitude might have any value from (+) 0. 
05' to (-) 0.05', and any value within these limits is as 

Error No. of obs. Percent of obs.

- 10′ 0 0. 0
- 9′ 1 0. 2
- 8′ 2 0. 4
- 7′ 4 0. 8
- 6′ 9 1. 8
- 5′ 17 3. 4
- 4′ 28 5. 6
- 3′ 40 8. 0
- 2′ 53 10. 6
- 1′ 63 12. 6

0 66 13. 2
+ 1′ 63 12. 6
+ 2′ 53 10. 6
+ 3′ 40 8. 0
+ 4′ 28 5. 6
+ 5′ 17 3. 4
+ 6′ 9 1. 8
+ 7′ 4 0. 8
+ 8′ 2 0. 4
+ 9′ 1 0. 2
+10′ 0 0. 0

0 500 100. 0

Table 303. Normal distribution of random errors.

40
500
---------

1
12.5
---------- 0.08 8%( )==

σ

0 10–( )2
1 9–( )2

2 8–( )2
4 7–( )2

9 6–( )2
, etc×+×+×+×+×

4474

499
------------- 8.966 2.99 (about 3)= =

σ
σ
σ

σ
σ



208 NAVIGATIONAL ERRORS

likely to occur as any other of the same precision. The 
same is true of a sextant that cannot be read more pre-
cisely than 0.1', and of a time-difference that cannot be 
measured more precisely than 1 μs. These values refer to 
the single errors indicated, and not to the total error that 
might be involved. This is a rectangular error, so called 
because of the shape of its plot, as shown in . The 100 
percent error is half the difference between readings. The 
50 percent error is half this amount, the 95 percent error 
is 0.95 times this amount, etc. In some cases it may be 
more meaningful to refer to the rectangular error as the 
resolution error.

Still another type random error is encountered in navi-
gation. If a compass is fluctuating periodically due to yaw 
of a ship, its motion slows as the end of a swing is ap-
proached, when the error approaches maximum value. If 
readings were taken continuously or at equal intervals of 
time, the interval being a small percentage of the total peri-
od of oscillation, the curve of errors would have a 
characteristic U-shape, as shown in Figure 303c. The same 
type error is involved in measurement of altitude of a celes-
tial body from a wing of the bridge of a heavily rolling 
vessel, when the roll causes large changes in the height of 
eye. This type of error is called a periodic error. The effect 
is accentuated by the tendency of the observer to make 

readings near one of the extreme values because the instru-
ment appears steadiest at this time. If it is impractical to 
make a reading at the center of the period, the error can be 
eliminated or reduced by averaging readings taken continu-
ously or at short intervals, as indicated above. This is the 
method used in averaging type artificial-horizon sextants. 
Generally, better results can be obtained by taking maxi-
mum positive and maximum negative readings, and 
averaging the results.

The curve of any type of random error is symmetrical 
about the line representing zero error. This means that in the 
ideal plot every point on one side of the curve is error of the 
same magnitude. The average of all readings, considering 
signs, is zero. The larger the number of readings made, the 
greater the probability of the errors fitting the ideal curve. 
Another way of stating this is that as the number of readings 
increases, the error of the average can be expected to 
decrease

304. Combinations of Errors

Many of the results obtained in navigation are subject 
to more than one error. Chapter 19, Volume 1, lists 19 er-
rors applicable to sextant altitudes. Some of these have 
several components. A number of possible errors are in-
volved in the determination of computed altitude and 
azimuth. A rectangular error is possible in finding the alti-
tude difference. Several additional errors may affect the 
accuracy of plotting. Thus, the line of position as finally 
plotted may include 30 errors or more. Corrections are ap-
plied for some of the larger ones, so that in each of these 
cases the applicable error is the difference between the ap-
plied correction and the actual error. Thus, a dip correction 
may be applied for a height of eye of 30 feet, while the ac-
tual height at the moment of observation may be 31 feet 6 
inches. Even if the height of eye is exactly 30 feet, a rectan-
gular error may be involved in taking the dip correction 
from the table

If two or more errors are applicable to a given result, 

Figure 303a. Normal curve of random error with 50 percent 
of area shaded. Limits of shaded area indicate probable 

error.

Figure 303b. Rectangular error, with 50 percent area 
shaded.

Figure 303c. Periodic error, with 50 percent area shaded.
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the total error is equal to the algebraic sums of all errors. 
Thus, if a given number is subject to errors of (+) 4, (-) 2, (-
) 1, (+) 3, (+) 2, 0, and (-) 2, the total error is (+) 4. System-
atic errors can be combined by adding the curves of 
individual errors. Thus, a magnetic compass may have a 
quadrantal error as shown by the top curve of Figure 304, 
and a semicircular error as shown by the second curve. The 
sum of these two errors is shown in the bottom curve. If, in 
addition, the compass has a constant error, the bottom curve 
is moved vertically upward or downward by the amount of 
the constant error, without undergoing a change of form. If 
the constant error is greater than the maximum value of the 
combined curves, all errors are positive or all are negative, 
but of varying magnitude.

If a number of random errors are combined, the result 
tends to follow a normal curve regardless of the shape of the 
individual errors, and the greater the number, the more 
nearly the result can be expected to approach the normal 
curve (Figure 303a). If a given result is subject to errors of 
plus or minus 3, 2, 1, 2, 4, 2, 1, 8, 1, and 2, the total error 
could be as much as 26 if all errors had the same sign. How-
ever, if these are truly random, the probability of them all 
having the same sign is only 1 in 1024. This is so because 
the chance of any one being positive (or negative) is one 
half. By the same reasoning, approximately half of the pos-
itive (or negative) results will have any one particular 
additional correction positive (or negative). Thus, the prob-
ability of any two particular corrections having a positive 

(or negative) sign is . The proba-

bility of all 10 corrections having a positive (or negative) 

sign is . If there were 20 corrections, the 

probability of all having a positive (or negative) sign would 

be .

When both systematic and random errors are present in 
a process, both effects are present. An increase in the 
number of readings decreases the residual random error, but 
regardless of the number of readings, a systematic error is 
present in its entirety. Thus, if a number of phase-difference 
readings are made at a fixed point, the average should be a 
good approximation of the true value if there is no 
systematic error. But if the equipment is out of adjustment 
to the extent that the lane is incorrectly identified, no 
number of readings will correct this error. In this 
illustration, a constant error is combined with a normal 
random error. The normal curve has the correct shape, but 
is offset from the zero value.

Under some conditions, systematic errors can be 
eliminated from the results even when the magnitude is not 
determined. Thus, if two celestial bodies differ in azimuth by 
180°, and the altitude of each is observed, the line midway 
between the lines of position resulting from these 
observations is free from any constant error in the altitude
(such as abnormal refraction or dip, or incorrect IC). It would 
not be free from such a constant error as one in time (unless 
the bodies were on the celestial meridian). Similarly, a fix 
obtained by observations of three stars differing in azimuth 
by 120°, or four stars differing by 90° is free from constant 
error in the altitude, if the center of the figure made by the 
lines of position is used. The center of the figure formed by 
circles of position from distances of objects equally spaced in 
azimuth is free from a constant error in range. A constant 
error in bearing lines does not introduce an error in the fix if 
the objects are equally spaced in azimuth. In all of these 
examples, the correct position is outside the figure formed by 
the lines of position if all objects observed are on the same 
side of the observer (that is, if they lie within an arc of less 
than 180°).

305. Navigation Accuracy

Navigation accuracy is normally expressed in terms 
of the probability of being within a specified distance of a 
desired point during the navigation process.

 If the accuracy of only a single line of position is being 
considered, the specified distance may be stated as the 
standard deviation (Section. 303) or some multiple thereof, 
assuming that the errors of the line of position follow a 
single-axis normal distribution. The distance as stated for 
the standard deviation of a line of position is measured from 
the arithmetic mean of the positions which could be 
established from a large number of observations at a given 
place and time. Therefore, this distance does not indicate 
the separation between the line of position and the observer's 
actual position, except by chance. If the error is stated as l , 
68.27 percent of the cases should result in line of position 
displacements from the arithmetic mean in any direction not 
exceeding the distance specified for l . If the error is stated 

Figure 304. Combining systemic error.
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as 2 , 95.45 percent of the lines of position should not be 
displaced from the arithmetic mean in any direction by more 
than the distance specified for 2 . If the error is stated as 
the probable error, 50 percent of the lines of position should 
not be displaced from the arithmetic mean in any direction 
by more than the distance specified for 0.6745 .

The standard deviation is also employed in developing 
expressions for the probability of a fix position being within 
a specified distance of the mean of the positions which could 
be established from a large number of observations at a given 
place and time by means of the system used to establish the 
fix.

In the following discussion, the fix is established by the 
intersection of two lines of position, each of which may be in 
error. The lines of position (Figure 305a) are range measure-
ments from two points at the extremities of a baseline of 
known length. Because of inaccuracies in measurement, the 
actual ranges differ from the measured values and may lie 
somewhere between the limits which are shown as additional 
arcs either side of the measured arc.

The intersection of the two lines of position together 
with the standard deviations associated with each is drawn 
to an expanded scale in Figure 305b. It can be shown that 
the contours of equal probability density about such an in-
tersection are ellipses with their center at the intersection. 
Thus, the ellipse shown in Figure 305b might be the 75 per-
cent probability ellipse, meaning that there are three 
chances in four that a fix will lie within such ellipse cen-
tered upon the mean of the positions which would be 

established from a large number of observations at a given 
place and time by means of the system used to establish the 
fix.

For simplicity in this discussion of navigation accura-
cy, the following assumptions are made:

1. All constant errors or bias errors have been 
removed, leaving only the random errors. Thus, the 
mean or average error is assumed to be zero.

2. These random errors are assumed to be normally 
distributed.

3. The errors associated with the two intersecting 
lines of position are assumed to be independent. 
This assumption implies that a change in the error 
of one line of position has no effect upon the other.

4. The lines of position are assumed to be straight 
lines in the small area in the immediate vicinity of 
their intersection. This assumption is valid so long 
as the standard deviation is small compared to the 
radius of curvature of the line of position.

5. Errors of position are limited to the two-dimension-
al case. As shown in Figure 305b, the general case 
of the intersection of two lines of position at any 
angle of cut and with different values of error asso-
ciated with each line of position results in an 
elliptical error figure. Figure 305c shows the ellipse 
simplified to geometrical terms.

One may readily surmise from Figure 305c that the ex-
act shape of the error figure varies with the magnitudes of 

Figure 305a. Fix established at intersection of two lines of position having different values of error.
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the two one-dimensional input errors, 1 and 2 as well as 

with the angle of cut, . The angle  is also the angle be-
tween the two values of sigma because the standard 
deviations are mutually perpendicular to their correspond-
ing lines of position. These variations can be calculated to 
provide the probability that a point is located within a circle 

of stated radius.

When this is done, the error is stated in terms more 
meaningful to the practicing navigator. The basis of this 
concept may best be seen by first considering the special 
case when the two errors are equal, and the angle of inter-
section of the lines of position is a right angle. In this case, 

Figure 305b. Expanded view of intersection of two lines of position.

Figure 305c. Basic error ellipse.
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and in this case alone, the error figure becomes a circle and 
is described by the circular normal distribution. A plot of 
this special function is given in Figure 305d. In this plot, the 
horizontal axis is measured in terms of R/ , R being the 

stated radius of the circle and  being the measure of error. 

The error measure is given simply as , for in this circular 

case 1 = 2. To illustrate, a measurement system gives a 

circular error figure and has a value of  = 100 meters; the 
probability of actually being located within a circle of 100 
meters radius when R/  = 1.0 may be read from the verti-
cal axis to be 39.3 percent. To obtain the radius of a circle 
within which a 50 percent probability results, the corre-
sponding value of R/  is seen to be 1.18 from the graph. 
Thus, for this example, the circular probable error (CPE
or CEP or circle of 50% probability) would be 118 meters..

 In one method of using error ellipses to obtain the 
radii of circles of equivalent probability, new values of 

 are found along the major and minor axes of the 
ellipse (Figure 305e) using the following equations:

.

Then the ratio  where  is the larger of the two 

new standard deviations, is used in entering Table 305a
which relates ellipses of varying values of ellipticity to the 
radii of circles of equivalent probability.

For a numerical example to illustrate the method of cal-
culation, assume that the angle of cut  is 50°, 1 is 15 

meters, and 2 is 20 meters to determine the probability of 
location within a circle of 30 meters radius.

For the computation the following numbers are 
needed:

Substituting in the equations for and , and 

 are calculated as 29.9 meters and 13.1 meters, respec-

tively. Since the function K multiplied by the larger of the 
two standard deviations obtained by the transformation 
method gives the value of the radius of the circle of the cor-
responding value of probability shown in Table 305a, 
K=1.003. On entering Table 305a with K=1.0 and c= 0.44, 
the probability is found to be 62 percent.

Table 305b and Figure 305g provides ready informa-
tion about the sizes of circles of specific probability value 
associated with ellipses of varying eccentricities.

In another method, fictitious values of sigma of identi-
cal value, indicated by *, are assumed to replace the two 

unequal values originally given ( 1and 2). A fictitious 

angle of cut *   is also assumed to replace the angle of cut 

( ) originally given (Figure 305f).
The method utilizes a set of probability curves, with a 

separate curve for each value of angle of cut (). These 
curves can be used only when the two error measures are 

Figure 305d. Circular normal distribution.
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equal, hence the need for making the transformation to the 
fictitious *.

The values of * and *   needed to utilize the prob-
ability curves may either be determined from Figure 305j
and Figure 305i or by means of the following equations:

where

Thus, 

.

To use the curve and nomogram for obtaining * and 

*, one must first calculate the ratio . The value , 

is always taken as the larger of the two in the ratio so that 
the ratio is always less than 1.0. With this ratio, enter the 

curve of Figure 305j and obtain the *factor. Multiply 

by this factor to obtain the fictitious function *. The 

nomogram of Figure 305i is entered with the same ratio to 
obtain the fictitious angle of cut *.

For a numerical example to illustrate the method of cal-
culation, assume that the angle of cut of 50°, 1, is 20 

meters, and 2 is 15 meters to determine the probability of 
location within a circle of 30 meters radius.

Calculate the ratio .

Enter the curve of Figure 305j with this ratio and obtain 
the * factor (0.845). Multiply this factor by 1 to obtain 

* equals 16.9 meters. Calculate the ratio

.

Enter the nomogram of Figure 305i with the ratio 
, and with the given angle  to obtain the fictitious 

angle of cut * = 47°.

The values  and = 47° are then used to 
enter the probability curves of  to obtain P= 0.62 or 62 per-
cent, interpolating between the 40° and 50° curves for = 
47°.

GEOMETRIC ERROR CONSIDERATIONS

306. Geometric Error Considerations

From the information that can be derived using the two 
methods of transformation of elliptical error data, one can 
develop curves which show for constant values of initial 
error that the size of a circle of fixed value of probability 
varies as a function of the angle of cut of the lines of 

position.

To simplify the investigation of geometrical factors, it 
is initially desirable to consider the special case of 

. Under this special condition, the long 

equations for and  can be simplified to facilitate 

computation as follows: 

Figure 305e. Transformation to standard deviations along ellipse axes.
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Table 305a. Circular error probability. Argument c is the ratio of the smaller standard deviation to the larger standard de-
viation. For the argument c and K, the table provides the probability that a point lies within a circle whose center is at the 
origin and whose radius is K times the larger standard deviation.
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Taking the ratio of these two values, a simple equation is 
found for the ratio c

Utilizing these simplified equations, significant param-
eters of error ellipses are tabulated in Table 306a as a 
function of the angle of cut . Using the CEP curve of Fig-
ure 305g, values of the CEP are calculated for each angle, 
showing that the CEP increases as the angle of cut decreas-
es. The last column in the table gives the factor by which the 
CEP for angles less than 90° is greater than the CEP for a 
right angle. This magnification of error curve is plotted in 
Figure 306b. The curve for the 90 percent probability circle 
has a slightly differing shape from the CEP curve as shown 
in Figure 306b. Values for the 90 percent probability circle 
are given in table Table 306c. Figure 306b indicates the 
magnitude of the growth of error as the angle of cut varies 
from 90°.

It is also of interest to consider what values of proba-
bility result if the radius of the circle is held constant at the 
minimum value corresponding to that obtained for the 90° 

angle of cut. These values may be obtained from the prob-
ability versus angle of cut curves in .

Along the ordinate  which corresponds to 
the CEP for the circular case, one may read the lesser values 
of probability corresponding to the various angles of cut. 
Likewise, one may also obtain the probability values corre-
sponding to holding a circle the size of the 90 percent 
probability circle for the circular case by using the ordinate 

 (also equivalent to 1.82 times the CEP). These 
two curves are plotted in Figure 306e and the numerical val-
ues are given in Table 306d. It is to be noted that the 
probability values are not inversely related to the error fac-
tors plotted in the preceding curves. The geometric error 
factor is a simple trigonometric function; the probability 
curves are exponential functions.

307. Clarification of terminology

The following discussion is presented to insure that there 
is no misunderstanding with respect to the use of terms having 
one meaning when discussing one-dimensional errors and 
another when discussing two-dimensional errors.

Table 305b. Factors for conversion of probability ellipse to circle of equivalent probability.

Figure 305f. Transformed parameters of error ellipse.
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Figure 305g. Factors for conversion of probability ellipse to circle of equivalent probability.
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Figure 305h. Probability versus the radius of the circle divided by the standard error and the angle of cut for elliptical 
bivariate distributions with two equal standards deviations.
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Although the basic problem of position location is 
concerned with the two dimensions necessary to describe 
an area, one-dimensional error measures are commonly 
applied to each of the two dimensions involved. As 
demonstrated in article 305, the use of the one-dimensional 
standard deviation of each line of position permitted a 
general approach to the consideration of the error ellipse.

308. One-Dimensional Errors

The terms standard deviation, sigma , and root 
mean square (RMS) error have the same meaning in 
reference to one-dimensional errors. The basic equation of the 
normal (Gaussian) distribution indicates the use of the Greek 
letter sigma, , from which its use for standard deviation 
arises: 

where the Greek letter  is the mean of the distribution.

Standard deviation of a measurement system is a 
property that may be determined experimentally. If a large 
number of measurements of the same quantity, a length for 
example, are made and compared with their mean value, the 
standard deviation is the square root of the sum of the 

squares of the differences (deviations) of the measurements 
from the mean value divided by one less than the number of 
measurements taken. The mean, or average value, is the 
sum of the measurements divided by the number of the 
measurements. Symbolically this operation is represented 
as:

The term root-mean-square (RMS) error comes from 
this latter method of computation.

Numerically, the values between the mean plus or mi-
nus one sigma (one standard deviation) corresponds to 
68.27 percent of the distribution. That is, if a large number 
of measurements were made of a given quantity, 68.27 per-
cent of the errors would be within the value of the mean 
plus or minus one standard deviation, or within . 

Likewise, errors within  correspond to 95.45 percent 

of the total errors and errors within  correspond to 
99.73 percent of the total errors. Colloquially, these condi-
tions are described as not exceeding the one-, two-, and 
three-sigma values, respectively.

The term probable error is identical in concept to 
standard deviation. The term differs from standard devia-
tion in that it refers to the median error; that is, no more than 

Figure 305i. Nomogram to obtain *.α
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half the errors in the measurement sample are greater than 
the value of the probable error. Linear probable error is re-

lated to standard deviation by a multiplication factor (Table 
308a). One probable error equals 0.6745 times one standard 

Figure 305j. * factors versus /  ratio.

 

c K   CEP
Error 
Factor

90 1.0 1.0 1.0 1.177 1.177 1.00
80 1.10 0.924 0.839 1.078 1.186 1.01
70 1.234 0.865 0.700 0.996 1.228 1.042
60 1.414 0.817 0.577 0.914 1.292 1.099
50 1.672 0.782 0.466 0.847 1.420 1.206
45 1.847 0.766 0.414 0.815 1.508 1.281
40 2.06 0.753 0364 0.783 1.620 1.376
30 2.74 0.733 0.268 0.734 2.01 1.710
20 4.06 0.718 0.176 0.700 2.85 2.42
10 8.11 0.710 0.087 0.680 5.52 4.69

Table 306a. Significant parameters of error ellipses when

σ σ2 σ1⁄

α σx σy
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Figure 306b. CEP magnification versus angle of cut.

c K   90% R
Error 
Factor

90 1.0 2.145 2.145 1.00
80 0.839 1.98 2.18 1.015
70 0.700 1.86 2.30 1.07
60 0.577 1.775 2.51 1.7
50 0.466 1.72 2.88 1.34
45 0.414 1.702 3.15 1.47
40 0.364 1.687 3.47 1.615
30 0.268 1.665 4.53 2.11
20 0.176 1.652 6.72 3.13
10 0.087 1.645 13.35 6.22

Table 306c. 90 percent error factor

P P

90 50 90
80 49.4 89.2
70 47.5 86.9
60 44.0 82.4
50 39.5 76
40 37 66
30 25 53
20 17 37
10 8 19

Table 306d. Probability decrease with decreasing angle of 
cut for a circle of constant radius

α

α
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deviation.

The term variance is met most frequently in detailed 
mathematical discussions.

309. Two-Dimensional Error

Terms similar or identical in words to those used for one-
dimensional error descriptions are also used with two-
dimensional or bivariate error descriptions. However, in the 
two-dimensional case, not all of these terms have the same 

meaning as before; considerable care is needed to avoid 
confusion.

Standard deviation or sigma has a definable meaning 
only in the specific case of the circular normal distribution 
where :

In the case of the circular normal distribution, the stan-
dard deviation  is equivalent to the standard deviation 
along both orthogonal axes. Because of concern with a ra-
dial distribution, the total distribution of errors involves 
numbers different from those of the linear case (Table 308a
and Table 309a). In the circular case,  error indicates that 
39.35 percent of the errors would not exceed the value of 
the  error; 86.47 percent would not exceed the  error; 

98.89 percent would not exceed the  error; and 99.78 

percent would not exceed the 3.5  error.

Figure 306e. Decrease in probability for a circle of constant radius versus angle of cut.

From/To 50.00% 68.27% 95.00% 99.73%

50.00% 1.0000 1.4826 2.9059 4.4475
68.27% 0.6745 1.0000 1.9600 3.0000

95.00% 0.3441 0.5102 1.0000 1.5307
99.73% 0.2248 0.3333 0.6533 1.0000

Table 308a. Linear error conversion factors.

σx σy=

PR 1 e
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From/To 39.35% 50.00% 63.21% 95.00% 99.78%

39.35% 1.0000 1.1774 1.4142 2.4477 3.5000

50.00% 0.8493 1.0000 1.2011 2.0789 2.9726

63.21% 0.7071 0.8325 1.0000 1.7308 2.4749

Table 309a. Circular error conversion factors.
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Because the usual case where there are two-dimension-
al distributions is that the standard   deviations   are 
different, resulting in an elliptical distribution, the circular 
standard deviation is less useful than the linear standard de-
viation. It is more common to describe two-dimensional 
distributions by the two separate one-dimensional standard 
deviations associated with each error axis. References, 
however, often do not make this distinction, referring to the 

position accuracy of a system as 600 feet , for exam-
ple. Such a description should leave the reader wondering 
whether the measure is circular error, in which case the 
numbers describe the 86 percent probability circle, or 
whether the number are to be interpreted as one-dimension-
al sigmas along each axis, in which case the 95 percent 
probability circle is indicated (assuming the distribution to 
be circular, which actually it may not be). 

The term RMS (root mean square) error when ap-
plied to two-dimensional errors does not have the same 
meaning as standard deviation. The term has the same 
meaning as radial error or , discussed   later. Such use 

of the term is deprecated.
In a circular normal distribution, the term circular 

probable error (CPE) or circular error probable (CEP)
refers to the radius of the circle inside of which there is a 50 
percent probability of being located.

The term CEP is also used to indicate the radius of a 
circle inside of which there is a 50 percent probability of be-
ing located, even though the actual error figure (Figure 
309b) is an ellipse. Article 305 describes one of the meth-
ods of obtaining such CEP equivalents when given ellipses 
of varying eccentricities. Curves and tables are available for 

performing this calculation. Despite the availability of 
these curves and tables, approximations are often made for 
this calculation of a CEP when the actual error distribution 
is elliptical. Several of these approximations are indicated 
and plotted for comparison with the exact curve in Figure 
309c. Of the various approximations shown, the top curve, 
the one which diverges the most rapidly, appears to be the 
most commonly used.

Another factor of interest concerning the relationship 
of the CEP to various ellipses is that the area of the CEP cir-
cle is always greater than the basic ellipse. Table 309d
indicates that the divergence between the actual area of the 
ellipse of interest and the circle of equivalent probability in-
creases as the ellipse becomes thinner and more elongated.

95.00% 0.4085 0.4810 0.5778 1.0000 1.4299

99.78% 0.2857 0.3364 0.4040 0.6993 1.0000

Table 309a. Circular error conversion factors.

2σ( )

Figure 309b. Error ellipse and circle of equivalent probability.

drms
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Figure 309c. CEP for elliptical error distribution approximations.

C = a / b Area of 50% ellipse Area of equivalent circle

0.0 0 1.43

0.1 0.437 1.46

0.2 0.874 1.56

0.3 1.31 1.76

0.4 1.75 2.06

Table 309d. Comparison of areas of 50% ellipses of varying eccentricities with areas of circles of equivalent probabilities.
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The value of the CEP may be related to the radius of 
other values of probability circles analytically for the case 
of the circular normal distribution by solving the basic 
equation for various values of probability. For this special 

case of the circular normal distribution, these relationships 
are shown drawn to scale in Figure 309e with the associated 
values tabulated in Table 309f.

0.5 2.08 2.37

0.6 2.62 2.74

0.7 3.06 3.12

0.8 3.49 3.52

0.9 3.93 3.94

1.0 4.37 4.37

Table 309d. Comparison of areas of 50% ellipses of varying eccentricities with areas of circles of equivalent probabilities.

Figure 309e. Relationship between CEP and other probability circles.

Multiply values of CEP by To obtain radii of circle of probability

1.150 60%

Table 309f. Relationship between CEP and radii of other probabilities circles of the circular normal distribution.
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The derivation of these values is shown in the follow-
ing analysis. First, the factor relating the CEP to the circular 
sigma is derived, then, as a second example, the relation-
ship between the 75 percent probability circle and the 
circular sigma is derived. The ratio of these two values is 
then the value shown in Table 309f for the 75 percent value.

The circular normal distribution equation is:

,

and

.

Take the natural logarithm of both sides

 

.

For the 75 percent probability circle,

.

The factors tabulated in Table 309f are sometimes used 
to relate varying probability circles when the basic distribu-
tion is not circular, but elliptical. That such a procedure is 
inaccurate may be seen by the curves of . It can be seen that 
the errors involved are small when the eccentricities are 
small. But the errors increase significantly when both high 
values of probability are desired and when the ellipticity in-
creases in the direction of long, narrow distributions.

The terms radial error, root mean square error, and 
 are identical in meaning when applied to two-dimen-

sional errors. Figure 309h illustrates the definition of . 

It is seen to be the square root of the sum of the square of 
the 1 sigma error components along the major and minor 
axes of a probability ellipse. The figure details the defini-
tion of 1 . Similarly, other values of  can be

derived by using the corresponding values of sigma. The 
measure  is not equal to the square root of the sum of 

the squares of  and  that are the basic errors associated 

with the lines of position of a particular measuring system. 
The procedures described in section 305 must first be uti-
lized to obtain the values shown as  and .

The three terms (radial error, root-mean-square error, 
and ) used as a measure of error are somewhat confus-

ing because they do not correspond to a fixed value of 
probability for a given value of the error measure. The 
terms can be conveniently related to other error measures 
only when , and the probability figure is a circle. 

In the more common elliptical cases, the probability associ-
ated with a fixed value of  varies as a function of the 

1.318 70%

1.414 75%

1.524 80%

1.655 85%

1.823 90%

2.079 95%

2.578 99%

Table 309f. Relationship between CEP and radii of other probabilities circles of the circular normal distribution.
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eccentricity of the ellipse. One  is defined as the radius 

of the circle obtained when , in Figure 309h, and 

varies from 0 to 1. Likewise, 2  is the radius of the cir-

cle obtained when , and  varies from 0 to 2. 

Values of the length of the radius  can be calculated as 

shown in Table 309i. From these values the associated 
probabilities can be determined from the tables of section 
305. The variations of probability associated with the val-

ues of 1  and 2  are shown in the curves of  and . 

shows the lack of a constant relationship in a slightly differ-

ent way. Here the ratio /CEP is plotted against the 

same measure of ellipticity. The three figures show graphi-
cally that there is not a constant value of probability 
associated with a single value of .

Figure 309m shows the substitution of the circular 
form for elliptical error distributions. When  and  are 

equal, the probability represented by 1  is 63.21 per-

cent. When  and  are unequal (  being the greater 

value), the probability varies from 64 percent when 

 percent when 

310. Navigation System Accuracy

In a navigation system, predictability is the measure of 
the accuracy with which the system can define the position 
in terms of geographical coordinates; repeatability is the 
measure of the accuracy with which the system permits the 
user to return to a position as defined only in terms of the 
coordinates peculiar to that system. Predictable accuracy, 
therefore, is the accuracy of positioning with respect to 
geographical coordinates; repeatable accuracy is the 
accuracy with which the user can return to a position whose 
coordinates have been measured previously with the same 
system. For example, the distance specified for the 
repeatable accuracy of a system such as GPS is the distance 
between two GPS positions established using the same 
satellites at different times. The correlation between the 
geographical coordinates and the system coordinates may or 
may not be known.

Relative accuracy is the accuracy with which a user 
can determine their position relative to that of another user 
of the same navigation system at the same time. Hence, a 
system with high relative accuracy provides good 
rendezvous capability for the users of the system. The 
correlation between the geographical coordinates and the 
system coordinates is not relevant.

311. Most Probable Position

Some navigators, particularly those of little experience, 
have been led by the simplified definitions and explanations 
usually given in texts to conclude that the line of position is 
infallible, and that a fix is without error, overlooking the 
frequent incompatibility of these two notions. Too often the 
idea has prevailed that information is either all right or all 
wrong. An example is the practice of establishing an 
estimated position at the foot of the perpendicular from a 
dead reckoning position to a line of position. The 
assumption is that the vessel must be somewhere on the line 
of position. The limitations of this often valuable practice 
are not understood by these inexperienced navigators.

A more realistic concept is that of the most probable 
position (MPP), which recognizes the probability of error 
in all navigational information, and determines position by 

Figure 309g. Relation of probability circles to CEP versus 
ellipticity.
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Figure 309h. Illustration of radical error or drms.

LENGTH OF 
1 drms 

PROBABILITY

1 drms 2 drms

0.0 1.0 1.000 0.683 0.954

0.1 1.0 1.005 0.682 0.955

0.2 1.0 1.020 0.682 0.957

0.3 1.0 1.042 0.676 0.961

0.4 1.0 1.077 0.671 0.966

0.5 1.0 1.118 0.662 0.969

0.6 1.0 1.166 0.650 0.973

0.7 1.0 1.220 0.641 0.977

0.8 1.0 1.280 0.635 0.980

0.9 1.0 1.345 0.632 0.981

1.0 1.0 1.414 0.632 0.982

Table 309i. Calculations of drms..
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y
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an evaluation of all available information, using the 

principles of errors.
Suppose a vessel were to start from a completely accu-

rate position and proceed on dead reckoning. If course and 
speed over the bottom were of equal accuracy, the uncer-
tainty of dead reckoning positions would increase equally 
in all directions with either distance or elapsed time (for any 
one speed these would be directly proportional and there-
fore either could be used). Therefore, a circle of uncertainty 
would grow around the dead reckoning position as the ves-
sel proceeded. If the navigator had full knowledge of the 
distribution and nature of the errors of course and speed, 
and the necessary knowledge of statistical analysis, s/he 
could compute the radius of the circle of uncertainty, using 
the 50 percent, 95 percent, or other probabilities.

In ordinary navigation, this is not practicable, but 
based upon experience and judgment, the navigator might 
estimate at any time the likely error of his or her dead reck-
oning or estimated position. With practice, navigators 
might acquire considerable skill in making this estimate. 
They would take into account, too, the fact that the area of 
uncertainty might be better represented by a circle, the ma-
jor axis being along the course line if the estimated error of 
the speed were greater than that of the course, and the minor 
axis being along the course line if the estimated error of the 
course were greater. They would recognize, too, that the 
size of the area of uncertainty would not grow in direct pro-
portion to the distance or elapsed time, because disturbing 
factors such as wind and current could not be expected to 
remain of constant magnitude and direction. Also, they 
would know that the starting point of the dead reckoning 
would not be completely free from error.

At some future time additional positional information 
would be obtained.   This might be a line of position from a 
celestial observation. This, too, would be accompanied by 
an estimated error which might be computed for a certain 
probability if the necessary information and knowledge 
were available. If the dead reckoning had started from a 
good position obtained by means of landmarks, the likely 
error of the initial position would be very small. At first the 
dead reckoning or estimated position would probably be 
more reliable than a line of position obtained by celestial 
observation. But at some distance the two would be equal, 
and beyond this the line of position might be more accurate.

The determination of most probable position does de-
pend upon which information is more accurate. In Figure 
311a a dead reckoning position, , is shown sur-

rounded by a circle of uncertainty with one-sigma error . 

A line of position is also shown, with its area of uncertainty 
with one-sigma error . The most probable position is 

within the overlapping area, and if the uncertainty of the 
dead reckoning position and that of the line of position are 
about equal, it might be taken at the center of the line per-
pendicular to the line of position that runs through the dead 
reckoning position. The intersection of the line of position 
with the perpendicular is position . The most prob-

Figure 309j. Variation in drms with ellipticity (1 drms)..

Figure 309k. Variation in drms with ellipticity (2 drms).

Figure 309l. Ellipticity versus drms /CEP (1 drms).
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able position means are taken to have only components on 
the perpendicular. If the overall errors are considered nor-

mal, and they are probably approximately, the effect of each 
error is proportional to its square, acting on the other po-

Figure 309m. Substitution of the circular form for elliptical error distributions.
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sition measurement. Thus, if the likely error of the dead 
reckoning position is = 3 miles, and that of a line of po-

sition is = 2 miles, the most probable position is nearer 

the line of position, being given by

=

with an uncertainty given by 

or

showing that the uncertainty of combining the two po-
sition estimates results in a position error smaller than that 
of either of the two contributing errors. 

If a fix is obtained from two lines of position, the area 
of uncertainty is a circle if the lines are perpendicular, have 
equal likely errors, and these errors can be considered nor-
mal. If one is considered more accurate than the other, the 
area is an ellipse, the two axes being proportional to the 
standard deviations of the two lines of position. As shown 
in Figure 311b, it is also an ellipse if the likely error of each 
is equal and the lines cross at an oblique angle. If the errors 
are unequal, the major axis of the ellipse is more nearly in 

If a fix is obtained from three or more lines of position 
spread in azimuth by more than 180°, and the error of each 
line is normal and equal to that of the others, the most prob-
able position is the center of the figure. By “center” is 
meant that point within the figure which is equidistant from 
the sides. If the lines are of unequal likely error, the distance 
of the most probable position from each line of position is 
proportional to the square of the likely error of that line 
times the sine of the angle formed by the other two lines. 

In the discussion of most probable position from lines 
of position, it has been assumed that no other positional in-
formation is available. Usually, this is an incorrect 
assumption, for there is nearly always a dead reckoning or 
estimated position. This can be considered in any of several 
ways. The square of its likely error can be used in the same 
manner as the square of the likely error of each line of po-
sition. A most probable position based upon the dead 
reckoning or estimated position and the most reliable line of 
position might be determined as explained above, and that 
line of position replaced with a new one parallel to it but 
passing through the most probable position just determined. 
This adjusted line of position can then be assigned a smaller 
likely error and used with the other lines of position to de-
termine the overall most probable position. A third way is 
to establish a likely error for the fix, and consider the most 
probable position as that point along the straight line join-
ing the fix and the dead reckoning or estimated position, the 
relative distances being equal to the square of the likely er-
ror of each position.

The value of the most probable position determined as 
suggested above depends upon the degree to which the var-
ious errors are in fact normal, and the accuracy with which 
the likely error of each is established. From a practical 
standpoint, the second factor is largely a matter of judgment 
based upon experience. It might seem that interpretation of 
results and establishment of most probable position is a 
matter of judgment anyway, and that the procedure outlined 
above is not needed. If a person will follow this procedure 
while gaining experience, and evaluate his or her results, 
the judgment developed should be more reliable than if de-
veloped without benefit of knowledge of the principles that 
are involved. The important point to remember is that the 
relative effects of normal random errors in any one direc-
tion are proportional to their squares.

Figure 311a. A most probable position based upon a dead 
reckoning position and line of position having equal 

probable errors.
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Systematic errors are treated differently. Generally, an 
attempt is made to discover the errors and eliminate them or 
compensate for them. In the case of a position determined 
by three or more lines of position resulting from readings 
with constant error, the error might be eliminated by finding 
and applying that correction (including sign) which will 

bring all lines through a common point.

312. Mistakes

The recognition of a mistake, as contrasted with an 
error (Section 301), is not always easy, since a mistake may 
have any magnitude, and may be either positive or negative. 
A large mistake should be readily apparent if the navigator 
is alert and has an understanding of the size of error to be 
reasonably expected. A small mistake is usually not detected 
unless the work is checked.

If results by two methods are compared, as a dead 
reckoning position and a line of position, exact agreement 
is not to be expected. But if the discrepancy is unreasonably 
large, a mistake is logically suspected. The definition of 
“unreasonably large” is a matter of opinion. If the 99.9 
percent areas of the two results just touch, it is possible that 
no mistake has been made. However, the probability of 
either one having so great an error is remote if the errors are 
normal. The probability of both having 99.9 percent error of 
opposite sign at the same instant is very small indeed. 
Perhaps a reasonable standard is that unless the most 
accurate result lies within the 95 percent area of the least 
accurate result, the possibility of a mistake should be 
investigated. Thus, if the areas of uncertainty shown in 
Figure 311a represent the 95 percent areas, it is probable 
that a mistake has been made.

As in other matters pertaining to navigation, judgment 
is important. The use to be made of the results is certainly a 
consideration. In the middle of an ocean passage a mistake 
is usually not serious, and will undoubtedly be corrected 
before it jeopardizes the safety of the vessel. But if landfall 
is soon to be made, or if search and rescue operations are to 
be based upon the position, almost any mistake is 
intolerable.

313. Conclusion

The correct identification of the nature of an error is 

important if the error is to be handled intelligently. Thus, the 
statement is sometimes made that a radio bearing need not 
be corrected if the receiver is within 50 miles of the 
transmitter.

The need for a correction arises from the fact that radio 
waves are assumed to follow great circles, and if radio 
bearings are to be plotted on a Mercator chart, the 
equivalent rhumb line is needed. The statement regarding 
50 miles implies that the size of the correction is propor-
tional to distance only. It overlooks the fact that latitude and 
direction of the bearing line are also important factors, and 
is therefore a dangerous statement unless its limitations are 
understood.

The recognition of the type of error is also important. 
A systematic error has quite a different effect than a random 
error, and cannot be reduced by additional readings unless 
some method or procedure is instituted which will cause the 
errors to cancel each other.

The errors for various percentage probabilities are usu-
ally of greater interest than the “average” value. The 
average of a large number of normal errors approaches ze-
ro, but the probable (50 percent) error might be quite large.

A person who understands the nature of errors avoids 
many pitfalls. Thus, the magnitude of the errors of individ-
ual lines of position is not a reliable indication of the size of 
the error of the fix obtained from them. The size of the ·tri-
angle formed by three lines of position has often been used 
as a guide to the accuracy of the fix, although a large trian-
gle might be the result of a large constant error if the objects 
observed are equally spaced in azimuth. On the other hand, 
two lines of position with small errors might produce a fix 
having a much larger error if the lines cross at a small angle.

314. References

Burt, W. A., Kaplan, D. J., Keenly, R. R., et al. (1965).
Mathematical Considerations Pertaining to the Accuracy of 
Position Location and Navigation Systems. Naval Warfare 
Research Center Research Memorandum NWRC-RM 34, 
Stanford Research Institute, Menlo Park, California.

Greenwalt, C. R. and Shultz, M. E. (1962). Principles 
of Error Theory and Cartographic Applications. 
Aeronautical Chart and Information Center Technical 
Report No. 96, St. Louis, Missouri.





233

CHAPTER 4 

CALCULATIONS AND CONVERSIONS

INTRODUCTION

400. Purpose and Scope

This chapter discusses the use of calculators and com-
puters in navigation and summarizes the formulas the 
navigator depends on during voyage planning, piloting, ce-
lestial navigation, and various related tasks. To fully utilize 
this chapter, the navigator should be competent in basic 
mathematics including algebra and trigonometry (See 
Chapter 1 - Mathematics in Volume II) and be familiar with 
the use of a basic scientific calculator. The navigator should 
choose a calculator based on personal needs, which may 
vary greatly from person to person according to individual 
abilities and responsibilities. 

401. Use of Calculators in Navigation

Any common calculator can be used in navigation, even 
one providing only the four basic arithmetic functions of ad-
dition, subtraction, multiplication, and division. Any good 
scientific calculator can be used for sight reduction, sailings, 
and other tasks. However, the use computer applications and 
handheld calculators specifically designed for navigation 
will greatly reduce the workload of the navigator, reduce the 
possibility of errors, and assure accuracy of the results 
calculated. 

Calculations of position based on celestial observa-
tions have become increasingly uncommon since the 
advent of GPS as a dependable position reference for all 
modes of navigation. This is especially true since GPS units 
provide worldwide positioning with far greater accuracy 
and reliability than celestial navigation. 

However, for those who use celestial techniques, a ce-
lestial navigation calculator or computer application can 
improve celestial position accuracy by easily solving nu-
merous sights, and by reducing mathematical and tabular 
errors inherent in the manual sight reduction process. They 
can also provide weighted plots of the LOP’s from any 
number of celestial bodies, based on the navigator’s subjec-
tive analysis of each sight, and calculate the best fix with 
latitude/longitude readout. 

In using a calculator for any navigational task, it is im-
portant to remember that the accuracy of the result, even if 
carried out many decimal places, is only as good as the least 
accurate entry. If a sextant observation is taken to an accu-
racy of only a minute, that is the best accuracy of the final 

solution, regardless the calculator’s ability to solve to 12 
decimal places. See Chapter 3 - Navigational Error in Vol-
ume II for a discussion of the sources of error in navigation.

Some basic calculators require the conversion of de-
grees, minutes and seconds (or tenths) to decimal degrees 
before solution. A good navigational calculator, however, 
should permit entry of degrees, minutes and tenths of min-
utes directly, and should do conversions automatically. 
Though many non-navigational computer programs have 
an on-screen calculator, they are generally very simple ver-
sions with only the four basic arithmetical functions. They 
are thus too simple for complex navigational problems. 
Conversely, a good navigational computer program re-
quires no calculator per se, since the desired answer is 
calculated automatically from the entered data.

The following articles discuss calculations involved in 
various aspects of navigation. 

402. Calculations of Piloting

• Hull speed in knots is found by:

This is an approximate value which varies with hull 
shape.

• Nautical and U.S. survey miles can be interconverted
by the relationships:

1 nautical mile = 1.15077945 U.S. survey miles.

1 U.S. survey mile = 0.86897624 nautical miles.

• The speed of a vessel over a measured mile can be
calculated by the formula:

where S is the speed in knots and T is the time in 
seconds.

• The distance traveled at a given speed is computed

S 1.34 waterline length (in feet).=

S
3600

T
------------=
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by the formula:

where D is the distance in nautical miles, S is the speed 
in knots, and T is the time in minutes.

• Distance to the visible horizon in nautical miles can be
calculated using the formula:

depending upon whether the height of eye of the observer 
above sea level is in feet (hf) or in meters (hm).

• Dip of the visible horizon in minutes of arc can be cal-
culated using the formula:

depending upon whether the height of eye of the observer 
above sea level is in feet (hf) or in meters (hm)

• Distance to the radar horizon in nautical miles can
be calculated using the formula:

depending upon whether the height of the antenna 
above sea level is in feet (hf) or in meters (hm).

• Dip of the sea short of the horizon can be calculated
using the formula:

where Ds is the dip short of the horizon in minutes 
of arc; hf is the height of eye of the observer above sea 
level, in feet and ds is the distance to the waterline of 
the object in nautical miles.

• Distance by vertical angle between the waterline
and the top of an object is computed by solving the
right triangle formed between the observer, the top of
the object, and the waterline of the object by simple
trigonometry. This assumes that the observer is at sea

level, the Earth is flat between observer and object, 
there is no refraction, and the object and its waterline 
form a right angle. For most cases of practical signifi-
cance, these assumptions produce no large errors. 

where D is the distance in nautical miles, a is the cor-
rected vertical angle, H is the height of the top of the 
object above sea level, and h is the observer’s height of 
eye in feet. The constants (0.0002419 and 0.7349) ac-
count for refraction.

403. Tide Calculations

• The rise and fall of a diurnal tide can be roughly cal-
culated from the following table, which shows the
fraction of the total range the tide rises or falls during
flood or ebb.

404. Calculations of Celestial Navigation

Unlike sight reduction by tables, sight reduction by cal-
culator permits the use of nonintegral values of latitude of 
the observer, and LHA and declination of the celestial 
body. Interpolation is not needed, and the sights can be 
readily reduced from any assumed position. Simultaneous, 
or nearly simultaneous, observations can be reduced using 
a single assumed position. Using the observer’s DR or MPP 
for the assumed longitude usually provides a better repre-
sentation of the circle of equal altitude, particularly at high 
observed altitudes.

• The dip correction is computed in the Nautical Alma-
nac using the formula:

where dip is in minutes of arc and h is height of eye in 
feet. This correction includes a factor for refraction. 
The Air Almanac uses a different formula intended for 
air navigation. The differences are of no significance in 
practical navigation.

• The computed altitude (Hc) is calculated using the ba-
sic formula for solution of the undivided navigational

D
ST
60
-------=

D 1.17 hf=  , or

D 2.07 hm=

D 0.97' hf=  , or

D 1.76' hm=

D 1.22 hf=  , or

D 2.21 hm=

Ds 60 tan
1– hf

6076.1 ds
----------------------

ds
8268
------------+

 
 
 

=

Hour Amount of flood/ebb

1 1/12
2 2/12
3 3/12
4 3/12
5 2/12
6 1/12

D
tan2  a

0.00024192
----------------------------

H h–
0.7349
----------------+

  atan
0.0002419
-------------------------–=

D 0.97 h=
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triangle: 

in which h is the altitude to be computed (Hc), L is the 
latitude of the assumed position, d is the declination of 
the celestial body, and LHA is the local hour angle of the 
body. Meridian angle (t) can be substituted for LHA in 
the basic formula. 
Restated in terms of the inverse trigonometric function: 

When latitude and declination are of contrary name, 
declination is treated as a negative quantity. No special 
sign convention is required for the local hour angle, as in 
the following azimuth angle calculations.

• The azimuth angle (Z) can be calculated using the al-
titude azimuth formula if the altitude is known. The 
formula stated in terms of the inverse trigonometric 
function is: 

If the altitude is unknown or a solution independent of 
altitude is required, the azimuth angle can be calculated 
using the time azimuth formula: 

The sign conventions used in the calculations of both 
azimuth formulas are as follows: (1) if latitude and dec-
lination are of contrary name, declination is treated as a 
negative quantity; (2) if the local hour angle is greater 
than 180°, it is treated as a negative quantity.

If the azimuth angle as calculated is negative, add 180°
to obtain the desired value.

• Amplitudes can be computed using the formula:  
  

this can be stated as  

where A is the arc of the horizon between the prime ver-
tical and the body, L is the latitude at the point of 
observation, and d is the declination of the celestial body.

405. Calculations of the Sailings

• Plane sailing is based on the assumption that the me-
ridian through the point of departure, the parallel 

through the destination, and the course line form a 
plane right triangle, as shown in Figure 405.  

From this, given course and distance (C and D), the dif-
ference of latitude (l) and departure (p) can be found, 
and given the latter, the former can be found, using 
simple trigonometry. See Chapter 12 - The Sailings, 
Volume I. 

• Traverse sailing combines plane sailings with two or 
more courses, computing course and distance along a 
series of rhumb lines. See Chapter 12 - The Sailings, 
Volume I.

• Parallel sailing consists of interconverting departure 
and difference of longitude. Refer to Figure 405.

• Mid-latitude sailing combines plane and parallel sail-
ing, with certain assumptions. The mean latitude (Lm) 
is half of the arithmetical sum of the latitudes of two 
places on the same side of the equator. For places on 
opposite sides of the equator, the N and S portions are 
solved separately.

h L d L d LHA,coscoscos+sinsin=sin

Hc sin
1–

L d ) L d LHA ) ].coscoscos(+sinsin([=

Z cos 1–  sin d  L sin Hcsin( )–
cos L cos Hc( )

-----------------------------------------------------



=

Z tan 1– sin LHA
cos L tan d( ) sin L cos LHA( )–

-----------------------------------------------------------------------------



=

A sin 1– sin d sec L( )=

A sin 1– sin d
cos L
-------------( )=

Figure 405. The plane sailing triangle.

From this: cos C=
1
D
----  , sin C=

p
D
----  , and tan C

p
1
---  .=

From this: 1=D cos C, D=1 sec C, and p=D sin C .

DLo p sec L, and p DLo cos L==
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In mid-latitude sailing:

• Mercator Sailing problems are solved graphically on
a Mercator chart. For mathematical Mercator solutions
the formulas are:

where m is the meridional part from Table 6 in the Ta-
bles Part of this volume. Following solution of the
course angle by Mercator sailing, the distance is by the
plane sailing formula:

• Great-circle solutions for distance and initial course 
angle can be calculated from the formulas:

and

where D is the great-circle distance, C is the initial great-
circle course angle, L1 is the latitude of the point of de-
parture, L2 is the latitude of the destination, and DLo is 
the difference of longitude of the points of departure 
and destination. If the name of the latitude of the desti-
nation is contrary to that of the point of departure, it is 
treated as a negative quantity.

• The latitude of the vertex, Lv, is always numerically equal 
to or greater than L1 or L2. If the initial course angle C is
less than 90°, the vertex is toward L2, but if C is greater than 
90°, the nearer vertex is in the opposite direction. The ver-
tex nearer L1 has the same name as L1.

The latitude of the vertex can be calculated from the
formula:

The difference of longitude of the vertex and the point
of departure (DLov) can be calculated from the formula:

The distance from the point of departure to the vertex 
(Dv) can be calculated from the formula:

• The latitudes of points on the great-circle track can
be determined for equal DLo intervals each side of the
vertex (DLovx) using the formula:

The DLov and Dv of the nearer vertex are never greater

than 90°. However, when L1 and L2 are of contrary

name, the other vertex, 180° away, may be the better
one to use in the solution for points on the great-circle
track if it is nearer the mid point of the track.

The method of selecting the longitude (or DLovx), and 

determining the latitude at which the great-circle cross-
es the selected meridian, provides shorter legs in higher 
latitudes and longer legs in lower latitudes. Points at 
desired distances or desired equal intervals of distance 
on the great-circle from the vertex (Dvx) can be calcu-

lated using the formulas: 

and

A calculator which converts rectangular to polar coor-
dinates provides easy solutions to plane sailings. 
However, the user must know whether the difference 
of latitude corresponds to the calculator’s X-coordinate 
or to the Y-coordinate.

406. Calculations of Meteorology and Oceanography

• Converting thermometer scales between centigrade,
Fahrenheit, and Kelvin scales can be done using the

DLo p sec Lm, and p DLo cos Lm==

tan C
DLo

m
-----------  or  DLo m tan C==

D l sec C.=

D = cos 1– sin L( 1   [ L2sin cos L1 cos L2  cos DLo )] ,+

C
sin DLo

cos L1   tan L2( ) sin L1  cos DLo( )–
-------------------------------------------------------------------------------------------
 
 
 1–

tan=

Lv cos
1–

cos L1  sin C( )=

DLov sin 1–  Ccos
 Lvsin

---------------- 
  .=

Dv sin
1–

cos L1 sin DLov( ).=

Lx tan
1–

cos D Lovx tan Lv( )=

Lx sin
1–

 sin Lv cos Dvx[ ]
·

,=

DLovx sin
1–

 
sin Dvx
cos Lx
------------------
 
 
 

·

.=
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following formulas:

• Maximum length of sea waves can be found by the 

formula:

• Wave height = 0.026 S2 where S is the wind speed in 
knots.

• Wave speed  in knots 

UNIT CONVERSION

Use the conversion tables that appear on the following pages to convert between different systems of units. 
Conversions followed by an asterisk are exact relationships.

MISCELLANEOUS DATA

Area
1 square inch _ _ _ _ _ _ _ _ _ _ _ _ _ _ = 6.4516 square centimeters*
1 square foot   _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 144 square inches* 

= 0.09290304 square meter* 
= 0.000022957 acre

1 square yard  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 9  square feet* 
= 0.83612736 square meter

1 square (statute) mile_ _ _ _ _ _ _ _ _ _ _ = 27,878,400 square feet*
= 640 acres* 
= 2.589988110336 square kilometers*

1 square centimeter _ _ _ _ _ _ _ _ _ _ _ _ = 0.1550003 square inch
= 0.00107639 square foot

1 square meter_  _  _  _  _  _  _  _  _  _  _  _  _  _  = 10.76391 square feet 
= 1.19599005 square yards

1 square kilometer  _  _  _  _  _  _  _  _  _  _  _  _  = 247.1053815 acres 
= 0.38610216 square statute mile 
= 0.29155335 square nautical mile

Astronomy
1 mean solar unit_  _  _  _  _  _  _  _  _  _  _  _  _  = 1.00273791 sidereal units
1 sidereal unit _ _ _ _ _ _ _ _ _ _ _ _ _ _ = 0.99726957 mean solar units
1 microsecond_  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.000001 second*
1 second  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 1,000,000 microseconds* 

= 0.01666667 minute
= 0.00027778 hour 
= 0.00001157 day

1 minute _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ = 60 seconds*
= 0.01666667 hour 
= 0.00069444 day

1 hour  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 3,600 seconds* 
= 60 minutes* 
= 0.04166667 day

1 mean solar day _  _  _  _  _  _  _  _  _  _  _  _  _  = 24h03m56s.55536 of mean sidereal time 
= 1 rotation of Earth with respect to Sun (mean)* 
= 1.00273791 rotations of Earth  
with respect to vernal equinox (mean) 
= 1.0027378118868 rotations of Earth  
with respect to stars (mean)

C° 5 F° - 32°( )
9

---------------------------- ,=

F° 9
5
---C° 32°, and+=

K° C° 273.15°.+=

W 1.5 fetch in nautical miles .=

1.34 wavelength in feet, or=

3.03 wave period in seconds× ·
.=
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1 mean sidereal day   _  _  _  _  _  _  _  _  _  _  _  = 23h56m04s09054 of mean solar time
1 sidereal month   _  _  _  _  _  _  _  _  _  _  _  _  = 27.321661 days 

= 27d07h43m11s.5
1 synodical month _  _  _  _  _  _  _  _  _  _  _  _  = 29.530588 days 

= 29d12h44m02s.8
1 tropical (ordinary) year  _  _  _  _  _  _  _  _  _  = 31,556,925.975 seconds 

= 525,948.766 minutes 
= 8,765.8128 hours

= 365d.24219879 – 0d.0000000614(t–1900),  
where t = the year (date) 
= 365d05h48m46s (–) 0s.0053(t–1900)

1 sidereal year   _  _  _  _  _  _  _  _  _  _  _  _  _  = 365d.25636042 + 0.0000000011(t–1900),  
where t = the year (date) 
= 365d06h09m09s.5 (+) 0s.0001(t–1900)

1 calendar year (common)_  _  _  _  _  _  _  _  _  = 31,536,000 seconds* 
= 525,600 minutes* 
= 8,760 hours* 
= 365 days*

1 calendar year (leap)   _  _  _  _  _  _  _  _  _  _  = 31,622,400 seconds* 
= 527,040 minutes* 
= 8,784 hours* 
= 366 days

1 light-year   _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 9,460,000,000,000 kilometers 
= 5,880,000,000,000 statute miles 
= 5,110,000,000,000 nautical miles 
= 63,240 astronomical units 
= 0.3066 parsecs

1 parsec _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 30,860,000,000,000 kilometers 
= 19,170,000,000,000 statute miles 
= 16,660,000,000,000 nautical miles 
= 206,300 astronomical units 
= 3.262 light years

1 astronomical unit   _  _  _  _  _  _  _  _  _  _  _  = 149,600,000 kilometers 
= 92,960,000 statute miles 
= 80,780,000 nautical miles 
= 499s.012 light-time 
= mean distance, Earth to Sun

Mean distance, Earth to Moon  _  _  _  _  _  _  _  = 384,400 kilometers 
= 238,855 statute miles 
= 207,559 nautical miles

Mean distance, Earth to Sun _  _  _  _  _  _  _  _  = 149,600,000 kilometers 
= 92,957,000 statute miles 
= 80,780,000 nautical miles
= 1 astronomical unit

Sun’s diameter  _  _  _  _  _  _  _  _  _  _  _  _  _  = 1,392,000 kilometers 
= 865,000 statute miles 
= 752,000 nautical miles

Sun’s mass_  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 1,987,000,000,000,000,000,000,000,000,000,000 grams 
= 2,200,000,000,000,000,000,000,000,000 short tons 
= 2,000,000,000,000,000,000,000,000,000 long tons

Speed of Sun relative to neighboring stars   _  _  = 19.4 kilometers per second 
= 12.1 statute miles per second 
= 10.5 nautical miles per second

Orbital speed of Earth   _  _  _  _  _  _  _  _  _  _  = 29.8 kilometers per second 
= 18.5 statute miles per second 
= 16.1 nautical miles per second

Obliquity of the ecliptic_  _  _  _  _  _  _  _  _  _  = 23°27′08″.26 – 0″.4684 (t–1900),  
where t = the year (date)

General precession of the equinoxes _  _  _  _  _  = 50″.2564 + 0″.000222 (t–1900), per year, 
where t = the year (date)
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Precession of the equinoxes in right ascension  _  = 46″.0850 + 0″.000279 (t–1900), per year, 
where t = the year (date)

Precession of the equinoxes in declination_  _  _  = 20″.0468 – 0″.000085 (t–1900), per year, 
where t = the year (date)

Magnitude ratio  _  _  _  _  _  _  _  _  _  _  _  _  _  = 2.512

Charts
Nautical miles per inch   _  _  _  _  _  _  _  _  _  _  = reciprocal of natural scale ÷ 72,913.39
Statute miles per inch _  _  _  _  _  _  _  _  _  _  _  = reciprocal of natural scale ÷ 63,360*
Inches per nautical mile  _  _  _  _  _  _  _  _  _  _  = 72,913.39 × natural scale
Inches per statute mile   _  _  _  _  _  _  _  _  _  _  = 63,360 × natural scale*
Natural scale   _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 1:72,913.39 × nautical miles per inch 

= 1:63,360 × statute miles per inch*

Earth
Acceleration due to gravity (standard)   _  _  _  _  = 980.665 centimeters per second per second 

= 32.1740 feet per second per second
Mass-ratio—Sun/Earth   _  _  _  _  _  _  _  _  _  _  = 332,958
Mass-ratio—Sun/(Earth & Moon)  _  _  _  _  _  _  = 328,912
Mass-ratio—Earth/Moon   _  _  _  _  _  _  _  _  _  = 81.30
Mean density  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 5.517 grams per cubic centimeter
Velocity of escape  _  _  _  _  _  _  _  _  _  _  _  _  = 6.94 statute miles per second
Curvature of surface   _  _  _  _  _  _  _  _  _  _  _  = 0.8 foot per nautical mile

World Geodetic System (WGS) Ellipsoid of 1984

Equatorial radius (a)   _  _  _  _  _  _  _  _  _  _  _  = 6,378,137 meters 
= 3,443.918 nautical miles

Polar radius (b)   _  _  _  _  _  _  _  _  _  _  _  _  _  = 6,356,752.314 meters 
= 3432.372 nautical miles

Mean radius (2a + b)/3   _  _  _  _  _  _  _  _  _  _  = 6,371,008.770 meters 
= 3440.069 nautical miles

Flattening or ellipticity (f = 1 – b/a)   _  _  _  _  _  = 1/298.257223563 
= 0.003352811

Eccentricity (e = (2f – f2)1/2) _  _  _  _  _  _  _  _  = 0.081819191

Eccentricity squared (e2)   _  _  _  _  _  _  _  _  _  = 0.006694380

Length
1 inch  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 25.4 millimeters* 

= 2.54 centimeters*
1 foot (U.S.)   _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 12 inches* 

= 1 British foot 
= 1/3 yard* 
= 0.3048 meter* 
= 1/6 fathom*

1 foot (U.S. Survey)   _  _  _  _  _  _  _  _  _  _  _  = 0.30480061 meter
1 yard  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 36 inches* 

= 3 feet* 
= 0.9144 meter*

1 fathom  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 6 feet* 
= 2 yards* 
= 1.8288 meters*

1 cable_  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 720 feet* 
= 240 yards* 
= 219.4560 meters*

1 cable (British)  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.1 nautical mile
1 statute mile  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 5,280 feet* 

= 1,760 yards* 
= 1,609.344 meters* 
= 1.609344 kilometers* 
= 0.86897624 nautical mile

1 nautical mile_  _  _  _  _  _  _  _  _  _  _  _  _  _  = 6,076.11548556 feet 

1005= *
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= 2,025.37182852 yards 
= 1,852 meters* 
= 1.852 kilometers* 
= 1.150779448 statute miles

1 meter   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 100 centimeters* 
= 39.370079 inches 
= 3.28083990 feet 
= 1.09361330 yards 
= 0.54680665 fathom 
= 0.00062137 statute mile 
= 0.00053996 nautical mile

1 kilometer_  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 3,280.83990 feet 
= 1,093.61330 yards 
= 1,000 meters* 
= 0.62137119 statute mile 
= 0.53995680 nautical mile

Mass
1 ounce  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 437.5 grains* 

= 28.349523125 grams* 
= 0.0625 pound* 
= 0.028349523125 kilogram*

1 pound  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 7,000 grains* 
= 16 ounces* 
= 0.45359237 kilogram*

1 short ton _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 2,000 pounds* 
= 907.18474 kilograms* 
= 0.90718474 metric ton* 
= 0.8928571 long ton

1 long ton  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 2,240 pounds* 
= 1,016.0469088 kilograms* 
= 1.12 short tons* 
= 1.0160469088 metric tons*

1 kilogram _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 2.204623 pounds 
= 0.00110231 short ton 
= 0.0009842065 long ton

1 metric ton   _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 2,204.623 pounds 
= 1,000 kilograms* 
= 1.102311 short tons 
= 0.9842065 long ton

Mathematics
 π   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 3.1415926535897932384626433832795028841971
π2   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 9.8696044011

_  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 1.7724538509
Base of Naperian logarithms (e)   _  _  _  _  _  _  = 2.718281828459
Modulus of common logarithms (log10e) _  _  _  = 0.4342944819032518
1 radian  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 206,264.″80625 

= 3,437′.7467707849 
= 57°.2957795131 
= 57°17′44″.80625

1 circle _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ = 1,296,000″*
= 21,600′* 
= 360°* 
= 2π radians*

180°   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = π radians*
1°   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 3600″* 

= 60′* 
= 0.0174532925199432957666 radian

1′   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 60″* 
= 0.000290888208665721596 radian

1″   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.000004848136811095359933 radian
Sine of 1′   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.00029088820456342460
Sine of 1″   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.00000484813681107637

π
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Meteorology
Atmosphere (dry air)

Nitrogen  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 78.08%
Oxygen   _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 20.95%
Argon  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.93%
Carbon dioxide   _  _  _  _  _  _  _  _  _  _  _  = 0.03%
Neon   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.0018%
Helium   _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.000524%
Krypton   _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.0001%
Hydrogen   _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.00005%
Xenon _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.0000087%
Ozone  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0 to 0.000007% (increasing with altitude)
Radon _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.000000000000000006% (decreasing with altitude)

Standard atmospheric pressure at sea level_  _  _  = 1,013.250 dynes per square centimeter 
= 1,033.227 grams per square centimeter 
= 1,033.227 centimeters of water 
= 1,013.250 hectopascals (millibars)* 
= 760 millimeters of mercury 
= 76 centimeters of mercury 
= 33.8985 feet of water 
= 29.92126 inches of mercury 
= 14.6960 pounds per square inch 
= 1.033227 kilograms per square centimeter 
= 1.013250 bars*

Absolute zero  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = (–)273.16°C 
= (–)459.69°F

Pressure
1 dyne per square centimeter  _  _  _  _  _  _  _  _  = 0.001 hectopascal (millibar)* 

= 0.000001 bar*
1 gram per square centimeter _  _  _  _  _  _  _  _  = 1 centimeter of water 

= 0.980665 hectopascal (millibar)* 
= 0.07355592 centimeter of mercury 
= 0.0289590 inch of mercury 
= 0.0142233 pound per square inch 
= 0.001 kilogram per square centimeter* 
= 0.000967841 atmosphere

1 hectopascal (millibar)  _  _  _  _  _  _  _  _  _  _  = 1,000 dynes per square centimeter* 
= 1.01971621 grams per square centimeter 
= 0.7500617 millimeter of mercury 
= 0.03345526 foot of water 
= 0.02952998 inch of mercury 
= 0.01450377 pound per square inch 
= 0.001 bar* 
= 0.00098692 atmosphere

1 millimeter of mercury  _  _  _  _  _  _  _  _  _  _  = 1.35951 grams per square centimeter 
= 1.3332237 hectopascals (millibars) 
= 0.1 centimeter of mercury* 
= 0.04460334 foot of water 
= 0.039370079 inch of mercury 
= 0.01933677 pound per square inch 
= 0.001315790 atmosphere

1 centimeter of mercury _  _  _  _  _  _  _  _  _  _  = 10 millimeters of mercury*
1 inch of mercury   _  _  _  _  _  _  _  _  _  _  _  _  = 34.53155 grams per square centimeter 

= 33.86389 hectopascals (millibars) 
= 25.4 millimeters of mercury* 
= 1.132925 feet of water 
= 0.4911541 pound per square inch 
= 0.03342106 atmosphere

1 centimeter of water  _  _  _  _  _  _  _  _  _  _  _  = 1 gram per square centimeter 
= 0.001 kilogram per square centimeter

1 foot of water_  _  _  _  _  _  _  _  _  _  _  _  _  _  = 30.48000 grams per square centimeter 
= 29.89067 hectopascals (millibars) 
= 2.241985 centimeters of mercury 
= 0.882671 inch of mercury 
= 0.4335275 pound per square inch 
= 0.02949980 atmosphere
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1 pound per square inch_  _  _  _  _  _  _  _  _  _  = 68,947.57 dynes per square centimeter 
= 70.30696 grams per square centimeter 
= 70.30696 centimeters of water 
= 68.94757 hectopascals (millibars) 
= 51.71493 millimeters of mercury 
= 5.171493 centimeters of mercury 
= 2.306659 feet of water 
= 2.036021 inches of mercury 
= 0.07030696 kilogram per square centimeter 
= 0.06894757 bar 
= 0.06804596 atmosphere

1 kilogram per square centimeter  _  _  _  _  _  _  = 1,000 grams per square centimeter* 
= 1,000 centimeters of water

1 bar   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 1,000,000 dynes per square centimeter* 
= 1,000 hectopascals (millibars)*

Speed
1 foot per minute   _  _  _  _  _  _  _  _  _  _  _  _  = 0.01666667 foot per second 

= 0.00508 meter per second*
1 yard per minute  _  _  _  _  _  _  _  _  _  _  _  _  = 3 feet per minute* 

= 0.05 foot per second* 
= 0.03409091 statute mile per hour 
= 0.02962419 knot 
= 0.01524 meter per second*

1 foot per second   _  _  _  _  _  _  _  _  _  _  _  _  = 60 feet per minute* 
= 20 yards per minute* 
= 1.09728 kilometers per hour* 
= 0.68181818 statute mile per hour 
= 0.59248380 knot 
= 0.3048 meter per second*

1 statute mile per hour   _  _  _  _  _  _  _  _  _  _  = 88 feet per minute* 
= 29.33333333 yards per minute 
= 1.609344 kilometers per hour* 
= 1.46666667 feet per second 
= 0.86897624 knot 
= 0.44704 meter per second*

1 knot_  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 101.26859143 feet per minute 
= 33.75619714 yards per minute 
= 1.852 kilometers per hour* 
= 1.68780986 feet per second 
= 1.15077945 statute miles per hour 
= 0.51444444 meter per second

1 kilometer per hour  _  _  _  _  _  _  _  _  _  _  _  = 0.62137119 statute mile per hour 
= 0.53995680 knot

1 meter per second_  _  _  _  _  _  _  _  _  _  _  _  = 196.85039340 feet per minute 
= 65.6167978 yards per minute 
= 3.6 kilometers per hour* 
= 3.28083990 feet per second 
= 2.23693632 statute miles per hour 
= 1.94384449 knots

Light in vacuum_  _  _  _  _  _  _  _  _  _  _  _  _  = 299,792.5 kilometers per second 
= 186,282 statute miles per second 
= 161,875 nautical miles per second 
= 983.570 feet per microsecond

Light in air _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 299,708 kilometers per second 
= 186,230 statute miles per second 
= 161,829 nautical miles per second 
= 983.294 feet per microsecond

Sound in dry air at 59°F or 15°C 

and standard sea level pressure _  _  _  _  _  = 1,116.45 feet per second 
= 761.22 statute miles per hour 
= 661.48 knots 
= 340.29 meters per second
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Sound in 3.485 percent saltwater at 60°F   _  _  _  = 4,945.37 feet per second 
= 3,371.85 statute miles per hour 
= 2,930.05 knots 
= 1,507.35 meters per second

Volume
1 cubic inch_  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 16.387064 cubic centimeters* 

= 0.016387064 liter* 
= 0.004329004 gallon

1 cubic foot _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 1,728 cubic inches* 
= 28.316846592 liters* 
= 7.480519 U.S. gallons 
= 6.228822 imperial (British) gallons
= 0.028316846592 cubic meter*

1 cubic yard_  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 46,656 cubic inches* 
= 764.554857984 liters* 
= 201.974026 U.S. gallons 
= 168.1782 imperial (British) gallons 
= 27 cubic feet* 
= 0.764554857984 cubic meter*

1 milliliter   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 0.06102374 cubic inch 
= 0.0002641721 U.S. gallon 
= 0.00021997 imperial (British) gallon

1 cubic meter  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 264.172035 U.S. gallons 
= 219.96878 imperial (British) gallons 
= 35.31467 cubic feet 
= 1.307951 cubic yards

1 quart (U.S.)  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 57.75 cubic inches* 
= 32 fluid ounces* 
= 2 pints* 
= 0.9463529 liter 
= 0.25 gallon*

1 gallon (U.S.)_  _  _  _  _  _  _  _  _  _  _  _  _  _  = 3,785.412 milliliters 
= 231 cubic inches* 
= 0.1336806 cubic foot 
= 4 quarts* 
= 3.785412 liters 
= 0.8326725 imperial (British) gallon

1 liter   _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 1,000 milliliters 
= 61.02374 cubic inches 
= 1.056688 quarts 
= 0.2641721 gallon

1 register ton   _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 100 cubic feet* 
= 2.8316846592 cubic meters*

1 measurement ton  _  _  _  _  _  _  _  _  _  _  _  _  = 40 cubic feet* 
= 1 freight ton*

1 freight ton_  _  _  _  _  _  _  _  _  _  _  _  _  _  _  = 40 cubic feet* 
= 1 measurement ton*

Volume-Mass
1 cubic foot of seawater  _  _  _  _  _  _  _  _  _  _  = 64 pounds

1 cubic foot of freshwater   _  _  _  _  _  _  _  _  _  = 62.428 pounds at temperature of maximum  
    density (4°C = 39°.2F)

1 cubic foot of ice   _  _  _  _  _  _  _  _  _  _  _  _  = 56 pounds

1 displacement ton  _  _  _  _  _  _  _  _  _  _  _  _  = 35 cubic feet of seawater* 
= 1 long ton
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NGA MARITIME SAFETY INFORMATION NAUTICAL CALCULATORS

NGA's Maritime Safety Office website offers a variety of online Nautical Calculators for public use. These calculators 
solve many of the equations and conversions typically associated with marine navigation. See Figure 406. 

Prefixes to Form Decimal Multiples and Sub-Multiples 
of International System of Units (SI)

Multiplying factor Prefix Symbol

1 000 000 000 000 = 1012 tera T

1 000 000 000 = 109 giga G

1 000 000 = 106 mega M

1 000 = 103 kilo k

100 = 102 hecto h

10 = 101 deka da

0. 1 = 10–1 deci d

0. 01 = 10–2 centi c

0. 001 = 10–3 milli m

0. 000 001 = 10–6 micro μ

0. 000 000 001 = 10–9 nano n

0. 000 000 000 001 = 10–12 pico p

0. 000 000 000 000 001 = 10–15 femto f

0. 000 000 000 000 000 001 = 10–18 atto a

Figure 406. Link to NGA Nautical Calculators. 
https://msi.nga.mil/NGAPortal/MSI.portal?_nfpb=true&_st=&_pageLabel=msi_portal_page_145

List of NGA Maritime Safety information Nautical Calculators https://msi.nga.mil

Celestial Navigation Calculators 

Compass Error from Amplitudes Observed on the Visible Horizon

Altitude Correction for Air Temperature

Table of Offsets

Latitude and Longitude Factors

Altitude Corrections for Atmospheric Pressure
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Altitude Factors & Change of Altitude

Pub 229

Compass Error from Amplitudes observed on the Celestial Horizon

Conversion Calculators

Chart Scales and Conversions for Nautical and Statute Miles

Conversions for Meters, Feet and Fathoms

Distance Calculators
Length of a Degree of Latitude and Longitude

Speed for Measured Mile and Speed, Time and Distance

Distance of an Object by Two Bearings

Distance of the Horizon

Distance by Vertical Angle Measured Between Sea Horizon and Top of Object Beyond 
Sea Horizon

Traverse Table

Geographic Range

Distance by Vertical Angle Measured Between Waterline at Object and Top of Object 

Dip of Sea Short of the Horizon

Distance by Vertical Angle Measured Between Waterline at Object and Sea Horizon 
Beyond Object

Meridional Parts

Log and Trig Calculators

Logarithmic and Trigonometric Functions 

Sailings Calculators

Great Circle Sailing

Mercator NGA Sailing

Time Zones Calculators

Time Zones, Zone Descriptions and Suffixes

Weather Data Calculators

Direction and Speed of True Wind

Correction of Barometer Reading for Height Above Sea Level

Correction of Barometer Reading for Gravity

Temperature Conversions

Relative Humidity and Dew Point

Corrections of Barometer Reading for Temperature

Barometer Measurement Conversions

List of NGA Maritime Safety information Nautical Calculators https://msi.nga.mil
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CHAPTER 5 

COMPASS CONVERSIONS

INTRODUCTION

500. Magnetic Compass Error

Directions relative to the northerly direction along a 
geographic meridian are true. In this case, true north is the 
reference direction. If a compass card is horizontal and 
oriented so that a straight line from its center to 000° points 
to true north, any direction measured by the card is a true 
direction and has no error (assuming there is no calibration 
or observational error). If the card remains horizontal but is 
rotated so that it points in any other direction, the amount of 
the rotation is the compass error. Stated differently, 
compass error is the angular difference between true north 
and compass north (the direction north as indicated by a 
magnetic compass). It is named east or west to indicate the 
side of true north on which compass north lies. 

If a magnetic compass is influenced by no other mag-
netic field than that of the earth, and there is no instrumental 
error, its magnets are aligned with the magnetic meridian at 
the compass, and 000° of the compass card coincides with 
magnetic north. All directions indicated by the card are 
magnetic. As stated in volume I, the angle between geo-
graphic and magnetic meridians is called variation (V or 
Var.). Therefore, if a compass is aligned with the magnetic 
meridian, compass error and variation are the same.

When a compass is mounted in a vessel, it is generally 
subjected to various magnetic influences other than that of 
the earth. These arise largely from induced magnetism in 
metal decks, bulkheads, masts, stacks, boat davits, guns, 
etc., and from electromagnetic fields associated with direct 
current in electrical circuits. Some metal in the vicinity of 
the compass may have acquired permanent magnetism. The 
actual magnetic field at the compass is the vector sum, or 
resultant of all individual fields at that point. Since the di-
rection of this resultant field is generally not the same as 
that of the earth's field alone, the compass magnets do not 
lie in the magnetic meridian, but in a direction that makes 
an angle with it. This angle is called deviation (D or Dev.). 
Thus, deviation is the angular difference between magnetic 
north and compass north. It is expressed in angular units 
and named east or west to indicate the side of magnetic 
north on which compass north lies. Thus, deviation is the 
error of the compass in pointing to magnetic north, and all 
directions measured with compass north as the reference di-
rection are compass directions. Since variation and 
deviation may each be either east or west, the effect of de-
viation may be to either increase or decrease the error due 

to variation alone. The algebraic sum of variation and devi-
ation is the total compass error. 

For computational purposes, deviation and compass 
error, like variation, may be designated positive· (+) if east 
and negative (-) if west. 

Variation changes with location. Deviation depends 
upon the magnetic latitude and also upon the individual 
vessel, its trim and loading, whether it is pitching or rolling, 
the heading (orientation of the vessel with respect to the 
earth's magnetic field), and the location of the compass 
within the vessel. Therefore, deviation is not published on 
charts. The effects of variation and deviation on the com-
pass card is depicted in Figure 500. 

501. Deviation Table

In practice aboard ship, the deviation is reduced to a 
minimum through adjustment of the compass. The 
remaining value, called residual deviation, is determined 
on various headings and recorded in some form of 
deviation table. Figure 502 shows the form used by the 
United States Navy. This table is entered with the magnetic 
heading, and the deviation on that heading is determined 
from the tabulation, separate columns being given for 
degaussing (DG) equipment off and on. If the deviation is 
not more than about 2° on any heading, satisfactory results 
may be obtained by entering the values at intervals of 45° 
only. 

If the deviation is small, no appreciable error is intro-
duced by entering the table with either magnetic or compass 
heading. If the deviation on some headings is large, the de-
sirable action is to reduce it, but if this is not practicable, a 
separate deviation table for compass heading entry may be 
useful. This may be made by applying the tabulated devia-
tion to each entry value of magnetic heading, to find the 
corresponding compass heading, and then interpolating be-
tween these to find the value of deviation at each 15° 
compass heading.

502. Applying Variation and Deviation

As indicated in Section 500, a single direction may 
have any of several numerical values depending upon the 
reference direction used. One should keep clearly in mind 
the relationship between the various expressions of a 
direction. Thus, true and magnetic directions differ by the 
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variation, magnetic and compass directions differ by the 
deviation, and true and compass directions differ by the 
compass error. 

If variation or deviation is easterly, the compass card is 
rotated in a clockwise direction. This brings smaller num-
bers opposite the lubber's line. Conversely, if either error is 
westerly, the rotation is counterclockwise and larger num-
bers are brought opposite the lubber's line. Thus, if the 
heading is 090° true (Figure 500, A) and variation is 6°E, 
the magnetic heading is 090°- 6°= 084° (Figure 500, B). If 
the deviation on this heading is 2°W, the compass heading 
is 084°+ 2°= 086° (Figure 500, C). Also, compass error is 
6°E-2°W= 4°E, and compass heading is 090°- 4°= 086°. If 
compass error is easterly, the compass reads too low (in 
comparison with true directions), and if it is westerly, the 
reading is too high. Many rules-of-thumb have been de-
vised as an aid to the memory, and any which assist in 
applying compass errors in the right direction are of value. 
However, one may forget the rule or its method of applica-
tion, or may wish to have an independent check. If they 
understand the explanation given above, they can deter-
mine the correct sign without further information. The same 
rules apply to the use of gyro error. Since variation and de-
viation are compass errors, the process of removing either 
from an indication of a direction (converting compass to 
magnetic or magnetic to true) is often called correcting. 
Conversion in the opposite direction (inserting errors) is 
then called uncorrecting.

Example. - A vessel is on course 215° true in an area 

where the variation is 7°W. The deviation is as shown in 
Figure 502. Degaussing is off. The gyro error (GE) is 1° E. 
A lighthouse bears 306.5° by magnetic compass.

Required.- (1) Magnetic heading (MH).
(2) Deviation.
(3) Compass heading (CH).
(4) Compass error.
(5) Gyro heading.
(6) Magnetic bearing of the lighthouse.
(7) True bearing of the lighthouse.
(8) Relative bearing of the lighthouse.

Solution. - 

The deviation is taken from the deviation table (Figure 
502) to the nearest half degree.

(4) Compass error is 7° W + 1.5° W = 8.5° W.

Figure 500. Effects of variation and deviation on the compass card.

TH 215°
V 7°W

(1) MH 222°
(2) D 1.5°W
(3) CH 223.5°

TH 215°
GE 1°E

(5) Hpgc 214°
CB 306.5°
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(8) RB='I'B-TH=298°-215°= 083°.

Answers.- (1) MH 222°, (2) D 1.5W°, (3) CH 223.5°, 
(4) CE 8.5°W, (5) Hpgc 214°, (6) MB 305°, (7) TB 298°, 
(8) RB 083°.

Answers to Problem 1.- (1) MC 090°, CC 095°, CE 
10°E; (2) TC 229°, V 10°E, MC 219°; (3) TC 060°, MC 
072°, D 5°E; (4) V 10°W, D 6°E, CE 4°W; (5) V 6°E, CC 
219°, CE 3°E; (6) V 12°E, D 2°W, CC 359°; (7) TC 019°, 
MC 021°, CE 4°E; (8) TC 213°, V 3°E, D 4°W.

Problem 2: A vessel is on course 150° by compass in 
an area where the variation is 19°E. The deviation is as 
shown in Figure 502. Degaussing is on.

Required. - (1) Deviation.
(2) Compass error.
(3) Magnetic heading.
(4) True heading.
Answers to Problem 2. - (1) D 1° Ε, (2) ΧΕ 20° Ε, (3) 

ΜΗ 151°, (4) ΤΗ 170°.

Problem 3: A vessel on a course of 055° by gyro and 
041° by magnetic compass. The gyro error is 1° W. The 
variation is 15° E.

Required. - The deviation on this heading.
Answer to Problem 3. - 2° W.

Problem 4: A vessel is on course 177° by gyro. The 
gyro error is 0.5° E. A beacon bears 088° by magnetic com-
pass in an area where variation is 11° W. The deviation is 
as shown in Figure 502. degaussing off.

Required. - The true bearing of the beacon.
Answer to Problem 4. - TB 076°.

D 1.5°W
(6) MB 305°

V 7°W
(7) TB 298°

Problem 1 - Fill in the blanks to this table

TC V MC D CC CE

° ° ° ° ° °

(1) 105 15 E - 5W - -

(2) - - - 4 E 215 14 E

(3) - 12 W - - 067 7 W

(4) 156 - 166 - 160 -

(5) 222 - 216 3 W - -

(6) 009 - 357 - - 10 E

(7) - 2 W - 6 E 015 -

(8) - - 210 - 214 1 W
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Figure 502. Deviation table.
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CHAPTER 6 

COMPASS ERROR 

DETERMINING COMPASS ERROR USING (PUB. NO. 229) SIGHT REDUCTION TABLES 
FOR MARINE NAVIGATION

600. Compass Error

One of the more frequent applications of sight 
reduction tables is their use in computing the azimuth of a 
celestial body for comparison with an observed azimuth in 
order to determine the error of the compass. In computing 
the azimuth of a celestial body, for the time and place of 
observation, it is normally necessary to interpolate the 
tabular azimuth angle as extracted from the tables for the 
differences between the table arguments and the actual 
values of declination, latitude, and local hour angle. The 
required triple interpolation of the azimuth angle is effected 
as follows:

1. The main tables are entered with the nearest inte-
gral values of declination, latitude, and local hour
angle; for these arguments, a base azimuth angle is
extracted.

2. The tables are reentered with the same latitude and
LHA arguments but with the declination argument
1° greater or less than the base declination argu-
ment depending upon whether the actual
declination is greater or less than the base argu-
ment. The difference between the respondent
azimuth angle and the base azimuth angle estab-

lishes the azimuth angle difference (Z Diff.) for the 
increment of declination.

3. The tables are reentered with the base declination
and LHA arguments but with the latitude argument
1° greater or less than the base latitude argument
depending upon whether the actual (usually DR)
latitude is greater or less than the base argument to
find the Z Diff. for the increment of latitude.

4. The tables are reentered with the base declination
and latitude arguments, but with the LHA argument 
1° greater or less than the base LHA argument de-
pending upon whether the actual LHA is greater or
less than the base argument to find the Z Diff. for
the increment of LHA.

5. The correction to the base azimuth angle for each

increment is .

Example.-In DR Lat. 13°24.0’N, the azimuth of the 
Sun is observed as 070.3° pgc. At the time of the observa-
tion, the declination of the Sun is 20°13.8’N; the local hour 
angle of the Sun is 276°41.2’. The error of the gyrocompass 
is found as follows:

Z Diff.
Inc.
60′
---------×

Actual
Base 

Arguments
Base Z Tab* Z Z Diff Increments

Correction 

* Respondent for two base arguments and1° change from third base argument, 
in vertical order of Dec., DR Lat., and LHA.

Z Diff Inc. 60÷×( )

Dec.    20°13.8′N 20° 71.8° 70.8° 1.0°– 13.8′ 0.2°–

DR Lat.  13°24.0N 13° (Same) 71.8° 71.9° +0.1° 24.0′ 0.0°

LHA   276°41.2′ 277° 71.8° 71.6° 0.2°– 18.8′ 0.1°–

Base Z      71.8° Total Corr.    -0.3°

Corr.  (-) 0.3°

Z    N71.5°E

Zn    071.5°

Zn pgc     070.3°

Gyro Error   1.2°E


