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CHAPTER 16 

TIME

TIME IN NAVIGATION

1600. Apparent and Solar Time

The Earth's rotation on its axis presents the Sun and 
other celestial bodies to appear to proceed across the sky 
from east to west each day. If a navigator measures the time 
interval between two successive transits across the local 
meridian of a very distant star by the passage of time 
against another physical time reference such as a chronom-
eter, he or she would be measuring the period of the Earth's 
rotation.

In the most practical sense, the Earth’s rotation is the 
navigator's standard of time. When the navigator then 

makes a similar measurement of the transit of the Sun, the 
resulting time interval would be about four minutes longer 
than the period determined by the Earth's rotation. This is 
due to the Earth's yearly orbital motion around the Sun, 
which continuously changes the apparent position of the 
Sun against the background of stars, traditionally observed 
as the cyclical procession of the zodiac. Thus, during the 
course of a day, the Sun appears to lag a little to the east 
with respect to the stars, and the Earth's rotation must ex-
ceed a complete rotation (360°) in order to have the Sun 
appear overhead at the local meridian.

Apparent eastward lag of the Sun with diurnal ob-
servations - when the Sun is on the observer's meridian at 
point A in the Earth's orbit around the Sun (see Figure 
1600a), it will not be on the observer's meridian after the 
Earth has rotated once (360°) because the Earth will have 
moved along its orbit to point B. Before the Sun can again be 
observed on the observer's meridian, the Earth must turn a lit-
tle more on its axis as shown in C. Thus, during the course of 
a day (as determined by the Earth's rotation period) the Sun 
appears to move eastward with respect to the celestial back-

ground of stars. 
The apparent positions of individual stars against the 

celestial background are commonly determined with refer-
ence to an imaginary point called the vernal equinox. The 
vernal equinox is the intersection of the celestial equator 
and the ecliptic (see Figure 1600b). The full rotation of the 
Earth measured with respect to the vernal equinox is called 
a sidereal day, and corresponds to the Earth's rotational pe-
riod. The period with respect to the Sun is called an 
apparent solar day, and includes the additional time to 

Figure 1600a. Apparent eastward movement of the Sun with respect to the stars.
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compensate for the Earth's orbital motion. 

A navigator using the observed position of the Sun, or 
the apparent Sun, to measure the passage of time from 
Earth's rotation results in apparent solar time. Apparent 
solar time is what a perfectly constructed and calibrated 
sundial would read at a given location, based on the appar-
ent position of the Sun in the sky. In astronomical terms, 
apparent solar time is determined by the local hour angle,
which is a measure of the Sun's projected angular distance 
east or west of the local meridian. Since each meridian is a 
line of constant longitude, at any instant of the Earth's rota-
tion, the apparent solar time will differ for every longitude. 

We define apparent solar time at a specific location as 12h

+ the local hour angle (expressed in hours) of the apparent 
position of the Sun in the sky. The local hour angle is neg-
ative when presenting east of the meridian.

Apparent solar time is not a uniform time scale; the ap-
parent Sun crosses the sky at slightly different rates at 
different times of the year. This means the apparent solar 
time runs “fast” with respect to a constant timescale, such 
as a chronometer, part of the year and “slow” during other 
parts of the year. Although the daily fractional change in the 
rate of the Sun's apparent motion is small, the accumulated 
time difference can reach as much as sixteen minutes. This 
effect is a function of the Earth's orbit around the Sun. It is 
the result of two superimposed cycles; the Earth's eccentric-
ity (no-circular orbit) and the tilt of Earth's axis with respect 
to the plane of its orbit (the ecliptic).

In order to create a uniform time scale for practical use, 
we imagine a point in the sky called the fictitious mean 
sun, which moves at a constant rate across the sky (at the 
celestial equator), regardless of the time of year. That is, the 
fictitious mean sun averages out the variations in the posi-
tion and rate of motion of the true Sun over the course of an 
entire year. The fictitious mean sun is never more than 
about 4 degrees east or west of the actual Sun, although it is 
only an imaginary point. We can define mean solar time in 

the same way as apparent solar time: mean solar time at a 

specific location is 12h + the local hour angle (expressed in 
hours) of the fictitious mean sun. Of course, the fictitious 
mean sun is not an observable point, so we need a mathe-
matical expression to tell us where it is with respect to the 
true Sun; this is the equation of time.

1601. Equation of Time

Mean solar time is sometimes ahead (fast) and some-
times behind (slow) of the apparent solar time. This 
difference is called the equation of time. The equation of 
time's minimum value is near -14 m 13 s in mid-February, 
and its maximum value is near 16 m 26 s in early 
November.

The equation of time gives the offset in minutes ap-
plied to mean solar time, as may be determined by a 
chronometer, to calculate the apparent solar time; specifi-
cally at the Sun's apparent passage at the local meridian.

The navigator most often deals with the equation of time 
when determining the time of upper meridian passage of the 
Sun, called Local Apparent Noon (LAN). Were it not for the 
difference in rate between the fictitious mean and apparent Sun, 

the Sun would always appear on the observer's meridian at 12h

(noon) local time. Except for four unique times of the year relat-
ed to the interaction of the Earth's eccentric orbit and inclination 
to the ecliptic, the LAN will always be offset from exactly noon 
mean solar time. This time difference, which is applied as the 
equation of time at meridian transit, is listed on the right hand 
daily pages of the Nautical Almanac. 

The sign of the equation of time is negative if apparent 
time is behind mean time; it is positive is apparent time is 
ahead of mean time. In either case, the equation is: 
Apparent Time = Mean Time + (equation of time). A 
negative equation of time is indicated by shading in the 
Nautical Almanac.

Example 1: Determine the local mean time of the Sun's 
meridian passage (Local Apparent Noon) on June 16, 2016.

Solution: See the Nautical Almanac's right hand daily 
page for June 16, 2016 (Figure 1601b). The equation of 
time is listed in the bottom right hand corner of the page. 

Figure 1600b. Solstices and equinoxes on the ecliptic.

Figure 1601a. Equation of time.
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There are two ways to solve the problem, depending on the 
accuracy required for the value of meridian passage. First, 
for minute accuracy, the time of the Sun at meridian 
passage is given to the nearest minute in the "Mer. Pass." 
column. For June 16, 2016, this time is 1201.

Second, to determine the nearest second of time of me-
ridian passage, use the value given for the equation of time 
listed immediately to the left of the "Mer. Pass." column on 
the daily pages. For June 16, 2016, the value is given as 
negative 00 m 47 s. (Use the "12 h" column because the 
problem asked for meridian passage at LAN.) 

Using the equation Apparent Time = Mean Time + 
(equation of time), we have 1200 = Mean Time + (-0047). 
Rearranging, we get Mean Time = 1200 + 0047. The exact 
mean time of meridian passage for June 16, 2016, is 12 h 
00 m 47 s.

To calculate latitude and longitude at LAN, the naviga-
tor seldom requires the time of meridian passage to 
accuracies greater than one minute (0.25 degrees of longi-
tude). Therefore, use the time listed under the “Mer. Pass.” 

column to estimate LAN unless extraordinary accuracy is 
required.

1602. Fundamental Systems of Time

Atomic based timekeeping is determined by the 
definition of the Systeme International (SI) second, with 
duration of 9,192,631,770 cycles of electromagnetic 
radiation corresponding to the transition between two 
hyperfine levels of the ground state of cesium 133. Interna-
tional Atomic Time (TAI) is an international time scale 
based on the non-stationary ensemble of atomic clock 
observations contributed by worldwide timekeeping 
laboratories, qualified by the Bureau International des 
Poids et Mesures (BIPM). 

Universal time (UT) is a generic reference to one of 
several timescales that approximate the mean diurnal mo-
tion of the fictitious mean sun. Loosely, UT is mean solar 
time at zero longitude, or the Greenwich meridian (pre-
viously known as Greenwich Mean Time (GMT). The 
term GMT has been dropped from scientific usage. In cur-

rent usage, UT either refers to UT1 or Coordinated 
Universal Time (UTC). In the navigational publications, 
UT always means UT1.

UT1 is a continuous timescale precisely defined by a 
mathematical expression that relates it to sidereal time, or 
the angle and rate of Earth's rotation to fixed points (usually 
very distant objects) of reference on the celestial back-
ground. Thus, UT1 is observationally determined by the 
apparent diurnal motions of celestial bodies and is affected 
by irregularities and the slowing of Earth's rate of rotation.

Coordinated Universal Time (UTC) is a discontinuous 
timescale determined by TAI and maintained by the BIPM. 
UTC is recognized by nearly all worldwide timing centers 
as the standard reference clock for purposes ranging from 
navigation to precise time stamping of financial transac-
tions. UTC is accurately distributed (usually better than ± 1 
ms) by radiometric and optical fiber-based transmission. 
UTC defines the 24 hour cycle or clock as 86,400 SI sec-
onds, not related to the rotation rate of the Earth. In this 
way, UTC appears to run faster than UT1, although it is 
UT1 that is varying because of the slowing of the Earth. To 
maintain the long term coordination of UTC with UT1 to 
within ±0.9 seconds, a one second interval is typically add-
ed as necessary to UTC. This added interval is known as a 
leap second. Since the explicit synchronization of UTC and 
UT1 in 1958 through 2016, there have been 36 leap seconds 
inserted into UTC. Although the expectation of the leap 
second insertion should be regular, it is not, and it is this ir-
regularity that makes the implementation of the leap second 
undesirable to the highly synchronized worldwide systems 
based on UTC. The leap second insertion is what character-
izes UTC as a discontinuous time scale. The formal 
insertion of leap second is to expand the minute modulo by 
one (count the minute with a leap second as 58,59,60,00). 
Because the difference between UT1 and UTC are always 
less than 0.9 sec, navigators often do not need to account for 
the difference except when the highest precisions are 
required.

GPS Time is the time disseminated by the Navstar sat-
ellites of GPS, and is not UTC(USNO), meaning UTC as 
maintained by the United States Naval Observatory (US-
NO). Rather GPS Time is a continuous timescale monitored 
against the USNO master clock and maintained with a fixed 
offset of 19 seconds added to TAI. To formulate UTC, a 
leap second field is given within the navigation message of 
the GPS signal, which the receiver then uses to accordingly 
increment GPS Time. The need for a continuous timescale 
for Global Navigation Satellite Systems (GNSS), such as 
GPS Time, is necessary to allow for the determination of 
velocity and interaction with inertial navigation systems. In 
this way, real time system dynamics may be separated from 
the discrete time of day feature of GPS. See Section 1613
on dissemination systems for further details.

Terrestrial time (TT), formerly known as Terrestrial 
Dynamical Time (TDT), is rarely used by a navigator. In 
practice TT = TAI + 32.184 sec.

Figure 1601b. Extract from the Nautical Almanac daily 
pages for June 16, 2016.
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Sidereal time is the hour angle of the vernal equinox. 
If the mean equinox is used (that is, neglecting nutation), 
the result is mean sidereal time; if the true equinox is used, 
the result is apparent sidereal time. The hour angle can be 
measured with respect to the local meridian or the Green-
wich meridian, yielding, respectively, local or Greenwich 
(mean or apparent) sidereal times.

Delta T is the difference between Terrestrial Time and 
Universal Time: Delta T = TT - UT1.

1603. Time and Longitude Arc

A navigator may be required to convert the measure of 
longitude arc to time or vice versa. The concept and math is 
not difficult, and calculators or tables (such as the one pro-
vided on page i in the back of the Nautical Almanac) can 
help. To illustrate, note that in this section, one day rep-
resents one complete rotation of the Earth as determined by 
a mean solar day. That is, one 24-hour period of 86,400 sec-
onds is the same as the Earth rotating 360°. Therefore, the 
time of day is an indication of the phase (amount of rota-
tion) within the Earth's orbital period, calculating how 
much of a mean solar day has elapsed, or what part of a ro-
tation has been completed. For example, initialing the day 
at zero hours, at one hour later, the Earth has turned through 
1/24 of its rotation, or 1/24 of 360°, or 360° ÷ 24 = 15°

Smaller intervals can also be stated in angular units; 
since 1 hour or 60 minutes is equivalent to 15° of arc, 1 min-
ute of time is equivalent to 15° ÷ 60 = 0.25° = 15' of arc, and 
1 second of time is equivalent to 15' ÷ 60 = 0.25' = 15" of 
arc. Therefore any time interval can be expressed as an 
equivalent amount of rotation, and vice versa. Conversion 
among these units can be aided by the relationships indicat-
ed below, summarizing in table form:

To convert time to arc:

If time is in hh:mm:ss format:

1. Convert to decimal hours. Take mm and divide by 
60 (60 is the number of minutes per hour). Take ss 
and divide by 3600 (3600 is the number of seconds 
per hour). Add both to hh. Mathematically, decimal 
hours = hh + mm ÷ 60 + ss ÷ 3600.

2. Multiply decimal hours by 15 to obtain decimal 
degrees of arc. 

3. If needed, convert decimal degrees of arc to deg° 
amin' asec” format, where deg is degree, amin is 

minutes of arc, and asec is seconds of arc. To do 
this, deg is simply the integer portion of the deci-
mal degrees. That is, the numbers before the 
decimal point. Take the remaining portion (that is, 
the decimal part) and multiply by 60. The minutes 
of arc, amin, is the integer portion of this. Take the 
remaining portion of this new value and again mul-
tiply it by 60. That is the seconds of arc, asec. 

Example 1: Convert 14h21m39s to arc.

Solution: 
Step 1: Convert to decimal hours. 14 + 21÷60 + 

39÷3600 = 14 + 0.35 + 0.01083 = 14.360833 hours
Step 2: Multiply by 15. 14.360833 × 15 = 215.4125°
Step 3: Convert to deg° amin' asec” format. The deg 

equal the integer portion of 215.4125, so deg = 215. The 
amin is found by taking the remainder,.4125, and multiply-
ing it by 60;.4125× 60 = 24.75. The amin equals the integer 
part, so amin = 24. The asec is found by taking the remain-
der of that,.75, and multiplying it by 60, which equals 45, so 
asec = 45. The final answer is

14 h 21 m 39 s of time = 215° 24' 45"

To covert arc to time, the steps are similar.

If arc is in the deg° amin' asec” format:

Step 1: Convert to decimal degrees. To do this, take 
amin and divide by 60 (60 is the number of minutes of arc 
per degree). Take asec and divide by 3600 (3600 is the 
number of seconds of arc per degree). Add both to deg. 
Mathematically, decimal degrees = deg + amin ÷ 60 + 
asec ÷ 3600.

Step 2: Divide decimal degrees of arc by 15 to obtain 
decimal hours of time. 

Step 3: If needed, convert decimal hours to hh:mm:ss 
format, where hh is hour, mm is minutes of time, and ss is 
seconds of time. To do this, hh is simply the integer portion 
of the decimal hours. That is, the numbers before the deci-
mal point. Take the remaining portion (that is, the decimal 
part) and multiply by 60. The minutes of time, mm, is inte-
ger portion of this. Take the remaining portion of this new 
value and again multiply it by 60. That is the seconds of 
time, ss. 

Convert 215° 24' 45" to time units.

Step 1: Convert to decimal degrees. Decimal degrees 
= deg + amin ÷ 60 + asec ÷ 3600. In this example, 215 + 
(24 ÷ 60) + (45 ÷ 3600), which equals 215.4125 degrees.

Step 2: Divide decimal degrees of arc by 15 to obtain 
decimal hours of time. 215.4125 ÷ 15 = 14.360833 hours.

Step 3: Convert decimal hours to hh:mm:ss format. 
The hh equal the integer portion of 14.360833, so hh = 14. 

1d    =24h =360°
60m  =1h =15°
4m   = 1° =60'

60s = 1m = 15'

4s = 1' = 60"

1s = 15" = 0.25'
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The mm is found by taking the remainder, .360833, and 
multiplying it by 60; .360833 × 60 = 21.65. The mm equals 
the integer part, so mm = 21. The ss is found by taking the 
remainder of that, .65, and multiplying it by 60, which 
equals 39, so ss = 39. The final answer is

 215° 24' 45" =14 h 21 m 39 s 

Solutions can also be made using arc to time conver-
sion tables in the almanacs. In the Nautical Almanac, the 
table given near the back of the volume is in two parts, per-
mitting separate entries with degrees, minutes, and quarter 
minutes of arc. This table is arranged in this manner be-
cause the navigator converts arc to time more often than the 
reverse.

Convert 334°18'22" to time units, using the Nautical 
Almanac arc to time conversion table.

Convert the 22" to the nearest quarter minute of arc for 
solution to the nearest second of time. Interpolate if more 
precise results are required.

334° 00.00 m = 22 h 16 m 00 s 

000° 18.25 m = 00 h 01 m 13 s 

334° 18' 22" = 22 h 17 m 13 s 

1604. Time Passage and Longitude

Section 1603 provides the direct coordination between 
the measure of longitude arc and the time passage of the 
mean solar day, equivalent to 24 hours equals 360 degrees 
of Earth's rotation. Thus, the measure of longitude between 
two fixed points is an angular equivalent of the time 
difference between these two points on the Earth. Therefore 
for any given time of day, places east of an observer have 
later time, and those places west have earlier time. The time 
difference observed between two places is equal to the 
difference of longitude between their meridians, expressed 
in units of time instead of arc. It is from this principle that 
longitude navigation through the use of a chronometer is 
derived. If an error free chronometer was set precisely at 
12h at a given local noon, properly adjusted for the equation 
of time, then any longitudinal excursion (distance traveled 
east or west) could be determined through the interval of 
time passage on the chronometer, compared to the transit of 
the Sun across the new local (present) meridian. 

1605. The Date Line

Since time accumulates later when traveling toward the 
east and earlier toward the west, a traveler circling the Earth 
gains or loses an entire day depending on the direction of 
travel. To provide a starting place for each new mean solar 

day, a date line extending from Earth's poles is fixed by 
informal agreement, called the International Date Line. 
The International Date Line separates two consecutive 
calendar days. It coincides with the 180th meridian over most 
of its length. In crossing this line, the date is altered by one 
day. The date becomes one day earlier when traveling 
eastward from east longitude to west longitude. Conversely 
the date becomes one day later when traveling westward 
across it. When solving celestial problems, we convert local 
time to UTC and then convert this to local time on the 
opposite side of the date line.

1606. Civil Time vs. Mean Solar Time and Time Zones

Mean solar time is closely related to civil time, which is 
what our clocks read if they are set accurately. The 
worldwide system of civil time has historically been based on 
mean solar time, but in the modern system of timekeeping, 
there are some differences.

Civil time is based on a worldwide system of 1-hour 
time zone segments, which are spaced 15 degrees of 
longitude apart. (The time zone boundaries are usually 
irregular over land, and the system has broad variations; local 
time within a country is the prerogative of that country's 
government.) All places within a time zone, regardless of 
their longitudes, will have the same civil time, and when we 
travel over a time zone boundary, we encounter a 1-hour shift 
in civil time. The time zones are set up so that each is an 
integral number of hours from a time scale called 
Coordinated Universal Time (UTC). UTC is accurately 
distributed by GPS, the Internet, and radio time signals. So 
the minute and second “ticks” of civil time all over the world 
are synchronized and counted the same; it is only the hour 
count that is different. (There are a few odd time zones that 
are a ¼ or ½ hour offset from neighboring zones. The minute 
count is obviously different in these places.)

1607. Zone Time

At sea, as well as ashore, watches and clocks are nor-
mally set to some form of zone time (ZT). At sea the 
nearest meridian exactly divisible by 15° is usually desig-
nated as the time meridian or zone meridian. Thus, within 
a time zone extending ±7.5° on each side of the time merid-
ian the time is the same, and time in consecutive zone 
increments differs by exactly one hour. The time main-
tained by a clock is changed as convenient, usually at a 
whole hour, when crossing the boundary between zones. 
Each time zone is identified by the number of times the lon-
gitude of its zone meridian is divisible by 15°, positive in 
west longitude and negative in east longitude. This number 
and its sign, called the zone description (ZD), is the num-
ber of whole hours that are added to or subtracted from the 
zone time to obtain UTC. Note that the zone description 
does not change when Daylight Savings Time is in effect. 
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The mean fictitious sun is the celestial reference point for 
zone time. See Table 1607a and Figure 1607b for more 

detail.

When converting ZT to UTC, a positive ZT is added 
and a negative one subtracted; converting UTC to ZT, a 
positive ZD is subtracted, and a negative one added.

Example: The UTC is 15h27m09s.

Required:    (1) ZT at long. 156°24.4' W 

Solutions: 15 h 27 m 09 s - (+150/15) = 05 h 27 m 09 s
In example (1), the nearest 15° increment is 150°W, 

leaving a remainder of less than ±7.5° (+6.407°).

Example: The UTC is 15h27m09s.

Required:    (2) ZT at long. 039°04.8' E

Solutions:  15 h 27 m 09 s + (-45/15) = 18 h 27m 09 s
In example (2), the nearest 15° increment is 45°E, 

leaving a remainder of less than ±7.5 °(-5.92°).

1608. Chronometer Time

Chronometer time (C) is time indicated by a chronome-

ter. Since a chronometer is set approximately to UTC and not 
reset until it is overhauled and cleaned about every 3 years, there 
is nearly always a chronometer error (CE), either fast (F) or 
slow (S). The change in chronometer error in 24 hours is called 
chronometer rate, or daily rate, and designated gaining or los-
ing. With a consistent error in chronometer rate of +1s per day 
for three years, the chronometer error would accumulate 18 min-
utes. Since chronometer error is subject to change, it should be 
determined from time to time, preferably daily at sea. Chronom-
eter error can be determined by comparison to a radio derived 
time signal, by comparison with another timekeeping system of 
known error, or by applying chronometer rate to previous read-
ings of the same instrument. It is recorded to the nearest whole 
or half second. Chronometer rate is recorded to the nearest 0.1 
second/day.

Example: At UTC 1200 on May 12 the chronometer reads 
12h04m21s. At UTC 1600 on May 18 it reads 4h04m25s.

Required: 
1. Chronometer error at 1200 UTC May 12.
2. Chronometer error at 1600 UTC May 18.
3. Chronometer rate.
4. Chronometer error at UTC 0530, May 27.

Time Zones, Zone Descriptions, and Suffixes

ZONE ZD SUFFIX ZONE ZD SUFFIX

 7.5° W to 7.5° E  0 Z  7.5° W to 22.5° W + 1 N

 7.5° E to 22.5° E -1 A 22.5° W to 37.5° W + 2 O

 22.5° E to 37.5° E -2 B  37.5° W to 52.5° W + 3 P

37.5° E to 52.5° E -3 C  52.5° W to 67.5° W + 4 Q

 52.5° E to 67.5° E -4 D  67.5° W to 82.5° W + 5 R

 67.5° E to 82.5° E -5 E  82.5° W to 97.5° W + 6 S

 82.5° E to 97.5° E -6 F  97.5° W to 112.5° W + 7 T

 97.5° E to 112.5° E -7 G  112.5° W to 127.5° W + 8 U

 112.5° E to 127.5° E -8 H  127.5° W to 142.5° W + 9 V

127.5° E to 142.5° E -9 I  142.5° W to 157.5° W + 10 W

142.5° E to 157.5° E -10 K  157.5° W to 172.5° W + 11 X

157.5° E to 172.5° E -11 L  172.5° W to 7.5° W + 12 Y

172.5° E to 180° E -12 M

Note. - GMT is indicated by suffix Z. Standard times as kept in various places or countries are 
listed in The Nautical Almanac and The Air Almanac.

Table 1607a. Time zones, descriptions, and suffixes.
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Solutions: 

Because UTC is on a 24-hour basis and chronometer 
time on a 12-hour basis, a 12-hour ambiguity exists. This 
is ignored in finding chronometer error. However, if 
chronometer error is applied to chronometer time to find 
UTC, a 12-hour error can result. This can be resolved by 
mentally applying the zone description to local time to 
obtain approximate UTC. A time diagram can be used 
for resolving doubt as to approximate UTC with date. If 

the Sun for the kind of time used (mean or apparent) is 
between the lower branches of two time meridians (as 
the standard meridian for local time, and ZT 0 or Zulu 
meridian for UTC, the date at the place farther east is one 
day later than at the place farther west.

1609. Watch Time

Watch time (WT) is usually an approximation of 
zone time, except that for timing celestial observations it 
is easiest to set a comparing watch to UTC. If the watch 
has a second-setting hand, the watch can be set exactly to 
ZT or UTC, and the time is so designated. If the watch is 
not set exactly to one of these times, the difference is 
known as watch error (WE), labeled fast (F) or slow (S) 
to indicate whether the watch is ahead of or behind the 
correct time.

If a watch is to be set exactly to ZT or UTC, set it to 
some whole minute slightly ahead of the correct time and 
stopped. When the set time arrives, start the watch and 
check it for accuracy.

The UTC may be in offset by 12h, but if the watch is 
graduated to 12 hours, this will not be reflected. If a watch 
with a 24-hour dial is used, the actual UTC should be 
applied.

To determine WE, compare the reading of the watch 
with that of the chronometer at a selected moment. This 
may also be at some selected moment to UTC. Unless a 
watch is graduated to 24 hours, its time is designated as AM 
(ante meridian) before noon and PM (post meridian) after 
noon.

Even though a watch is set approximately to the zone 

Figure 1607b. Time zones of the world.

1. UTC 12h00m00s May 12
C 12h04m21s

CE (F)4m21s gaining

2. UTC 16h00m00s May 18
C 04 04 25 
CE (F)4m25s gaining

3. UTC 18d16h present
UTC 12d12h past
diff. 06d04h = 6.2d

CE (F)4m21s 1200 May 12
CE (F)4m25s 1600 May 18
diff. 4s (gained)
daily rate 0.6s/d (gain) 4s/6.2d

4. UTC 27d05h30m present
UTC 18d16h00m past
diff. 08d13h30m (8.5d)
CE (F)4m25s 1600 May 18
corr. (+)0m05s diff. × rate
CE (F)4m30s 0530 May 27
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time, its error to UTC can be determined and used for 
timing observations. In this case the 12-hour ambiguity to 
UTC should be resolved, and a time diagram used to avoid 
miscalculation. This method requires additional work, and 
presents a greater probability of error, and gains no greater 
advantage provided through WE compensation.

If a stopwatch is used for timing observations, it should 
be started at some convenient UTC, such as a whole 5m or 
10m. The time of each observation is then the UTC plus the 
watch time. Digital stopwatches and wristwatches are ideal 
for this purpose, as they can be set from a convenient UTC 
and read immediately after the observation is taken.

1610. Local Mean Time

Local mean time (LMT), like zone time, uses the 
mean Sun as the celestial reference point. It differs from 
zone time in that the local meridian is used as the terrestrial 
reference, rather than a zone meridian. Thus, the local mean 
time at each meridian differs from every other meridian, the 
difference being equal to the difference of longitude 
expressed in time units. At each zone meridian, including 
0°, LMT and ZT are identical.

In navigation the principal use of LMT is in rising, 
setting, and twilight tables. The problem is usually one of 
converting the LMT taken from the table to ZT. At sea, the 
difference between the times is normally not more than 
30m, and the conversion is made directly, without finding 
GMT as an intermediate step. This is done by applying a 
correction equal to the difference of longitude. If the 
observer is west of the time meridian, the correction is 
added, and if east of it, the correction is subtracted. If 
Greenwich time is desired, it is found from ZT.

Where there is an irregular zone boundary, the longitude 
may differ by more than 7.5° (30m) from the time meridian.

If LMT is to be corrected to daylight saving time, the 
difference in longitude between the local and time meridian 
can be used, or the ZT can first be found and then increased 
by one hour.

Conversion of ZT (including GMT) to LMT is the 
same as conversion in the opposite direction, except that the 
sign of difference of longitude is reversed. This problem is 
not normally encountered in navigation.

1611. Sidereal Time

Sidereal time uses the celestial datum of the vernal 
equinox (first point of Aries) as the celestial reference point 
instead of the apparent procession of Sun. Since the Earth 
revolves around the Sun, and since the direction of the 
Earth's rotation and revolution are the same, it completes a 
rotation with respect to the stars in less time (about 3 m 56.6 
s of mean solar units) than with respect to the Sun, and 
during one revolution about the Sun (1 year) it makes one 

complete rotation more with respect to the stars than with 
the Sun. This accounts for the daily shift of the stars nearly 
1° westward each night. Hence, sidereal days are shorter 
than solar days, and its hours, minutes, and seconds are 
correspondingly shorter. Because of nutation, sidereal time 
is not quite constant in rate. Time based upon the average 
rate is called mean sidereal time, when it is to be distin-
guished from the slightly irregular sidereal time. The ratio 
of mean solar time units to mean sidereal time units is 
1:1.00273791.

A navigator very seldom uses sidereal time. 

1612. Time and Hour Angle

As mentioned earlier, hour angle is a measure of how 
far east or west of a meridian a celestial object appears. If 
the local meridian is used, this measure is called a local 
hour angle (LHA). If the Greenwich meridian is used, 
then it is called a Greenwich hour angle, GHA. Hour an-
gles are often expressed in arc units, between 0 and 360°. 
The hour angle is zero for an object crossing the meridian, 
and increases as the object moves west of the meridian (set-
ting). In other words, an object transiting the meridian has 
an hour angle of 0°. Shortly after transit, its hour angle 
would be 1°, shortly before transit it would be 359°.

Sidereal time is the hour angle of the vernal equinox, 
but it is usually expressed in time units. Solar time at a spe-
cific location is also an hour angle measurement of the Sun, 
but since the day starts at midnight, 12 hours is added. That 
is, local solar time = 12 hours + local hour angle (expressed 
in hours) of the position of the Sun in the sky.

As with time, LHA at two places differs by their differ-
ence in longitude. In addition, it is often convenient to 
express hour angle in terms of the shorter arc between the 
local meridian and the body, that is, instead of 0° to 360°, it 
can be expressed 0° to 180°. This is similar to measurement 
of longitude from the Greenwich meridian. Local hour an-
gle measured in this way is called meridian angle (t), which 
must be labeled east or west, like longitude, to indicate the 
direction of measurement. A westerly meridian angle is nu-
merically equal to LHA, while an easterly meridian angle is 
equal to 360° - LHA. Mathematically, LHA = t (W), and 
LHA = 360° - t (E). Meridian angle is used in the solution 
of the navigational triangle.

Find LHA and t of the Sun at for long. 118°48.2' W if 
the GHA of the Sun is 231° 04.0'.

LHA = GHA - west longitude, and LHA = GHA + east 
longitude, thus, for our example

LHA(Sun) = 231° 04.0' - 118° 48.2' = 112° 15.8'

t = 112° 15.8' W
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RADIO DISSEMINATION OF TIME SIGNALS

1613. Dissemination Systems

Of the many systems for time and frequency dissemi-
nation, the majority employ some type of radio 
transmission, either in dedicated time and frequency 
emissions or established systems such as radionavigation 
systems. The most accurate means of time and frequency 
dissemination today are by the mutual exchange of round-
trip time signals through communication (commonly called 
Two-Way) and by the mutual observation of one-way 
signals from navigation satellites (such as Common View, 
All-in-View, and Differential GPS). One-way direct access 
to Global Navigation Satellite Systems (GNSS) is an 
excellent way to obtain UTC if many satellite observations 
are averaged.

Radio time signals can be used either to perform a 
clock’s function or to set clocks. When using a radio wave 
several factors must be considered. One is the delay time of 
approximately 3 microseconds per kilometer it takes the 
radio wave to propagate and arrive at the reception point. 
Thus, a user 1,000 kilometers from a transmitter receives 
the time signal about 3 milliseconds later than the on-time 
transmitter signal. If time is needed to better than 3 
milliseconds, a correction must be made for the time it takes 
the signal to pass through the receiver.

In most cases standard time and frequency emissions 
as received are more than adequate for ordinary needs. 
However, many systems exist for the more exacting 
scientific requirements, such as Precise Point Positioning 
using GNSS carrier phase.

1614. Characteristic Elements of Dissemination 
Systems

A number of common elements characterize most 
time and frequency dissemination systems. Among these 
elements, the most important are accuracy, ambiguity, 
repeatability or precision, coverage, availability of time 
signal, reliability, ease of use, cost to the user, and the 
number of users served. No single system optimizes all 
desired these characteristics. The relative importance of 
these characteristics will vary by application, and the 
solution for one user may not be satisfactory to another. 
These trade among these common elements are discussed 
in the following examination of a hypothetical radio 
signal.

Consider a very simple system consisting of an un-
modulated 10-kHz signal as shown in Figure 1614. This 
signal, leaving the transmitter at 0000 UTC, will reach the 
receiver at a later time due to the propagation delay. The 
user must know this delay because the accuracy of the re-
covered time from the transmitted signal can be no better 
than the certainty in this delay. Since all cycles of the sig-
nal waveform are identical, the signal is ambiguous and 

the user must resolve which cycle is the “on time” cycle, 
in this case the cycle leaving at 0000 UTC. This means, 
with respect to a 10-kHz signal waveform, the user must 
already know the propagation delay to within ± 50 micro-
seconds (half the period of the signal). The calibration of 
the waveform cycle over cycle phase (zero crossings as 
defined in the figure) to resolve ambiguity in time dissem-
ination is called the “tick to phase” determination. 
Further, the user may desire to periodically use the time-
transfer system, say once a day, to check their clock or fre-
quency standard. However, if the travel delay and 
instrument repeatability vary from one day to the next 
without the user knowing or correcting, the accuracy will 
be limited by the amounts attributed to these uncertainties. 

Many users are interested in making time-coordinated 
measurements over large geographic areas. They would 
like all measurements to be traceable to one master refer-
ence time to make corrections for the offsets between 
geographically distributed timekeeping systems. In addi-
tion, traceability to a master reference system increases 
confidence that all time measurements are related to each 
other in a consistent manner. Thus, the accuracy over the 
range of geographic coverage of a dissemination system is 
an important characteristic. Another important character-
istic of a time dissemination system is the percentage of 
availability.

For most social uses of time, people who have to keep 
an appointment usually need to know the time of day to 
within a few minutes. Although requiring only coarse time 
information, people keeping a social schedule want it on 
demand, and thus carry a wristwatch or other portable de-
vice with a clock function that gives the time with 
continuous availability. People who have access to the in-
ternet can set the time of their personal computers to an 

Figure 1614. Single tone time dissemination.
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accuracy of UTC of ±100 milliseconds, or considerably 
better, through the Network Time Protocol (NTP), with 
near continuous availability, dependent on the network's 
reliability. On the other hand, a person with a scientific in-
terest may possess a very good clock capable of 
maintaining a few microseconds with only an occasional 
need for an accuracy update, perhaps only once or twice a 
day. However, in this distinguishing case, the scientific 
user requires much greater precision and accuracy in time 
dissemination than the social user, when available. This 
leads to the characteristic of time dissemination reliabili-
ty, i.e., the likelihood that a time signal will be available 
when scheduled. In the case of the scientific user, the 
availability of time dissemination may be a critical opera-
tional need, and reliability may be as important as 
precision. Propagation fade-out or user location (such as 
in a basement or the woods) can sometimes prevent or dis-
tort signal reception. Thus, the quality and cost of time 
dissemination services contrast accuracy, availability and 
reliability against the application needs of the user com-
munity and the capability of their local clocks.

1615. Radio Wave Propagation Factors

Radio has been used to transmit standard time and 
frequency signals since the early 1900's. As opposed to the 
physical transfer of time via portable clocks, the transfer of 
timing information by radio involves the use of electro-
magnetic propagation from a transmitter, usually carrying 
the master reference time, to a navigator's receiver at long 
distance.

In the broadcast of frequency and time over radio, the 
transmitted signals are directly related to some master clock 
and are usually received with some degradation in accuracy. 
In a vacuum and with a noise-free background, timing 
signals should be received at a distant receiver essentially 
undistorted, with a constant path delay due to the propagation 
of the radio wave at the speed of light (299,773 kilometers 
per second). However the propagation media, including the 
Earth's atmosphere and ionosphere, reflections and 
refractions caused by man-made obstructions and geographic 
features, and space weather (solar-activity), as well as the 
inherent characteristics of transmitters and receivers, degrade 
the fidelity and accuracy of timing derived from the received 
radio signals. The amount of degradation in timing recovered 
from the signals is also dependent upon the frequency of the 
transmitted radio wave (carrier frequency), and the length of 
signal path. In many cases the application of propagation 
models or supplementary information must be used to correct 
for the distorting effects. For example, GPS receivers, which 
only use the L1 frequency, have correction models built into 
their systems to correct for propagation through the 
ionosphere from space

Radio dissemination systems can be classified in a 
number of different ways. One way is to separate those 
carrier frequencies low enough to be reflected by the 

ionosphere (below 30 MHz) from those sufficiently high to 
penetrate the ionosphere (above 30 MHz). The former can 
be observed at great distances from the transmitter but 
suffer from ionospheric propagation distortion that limits 
accuracy; the latter are restricted to line-of-sight 
applications but show less signal degradation caused by 
propagation effects. The most accurate systems tend to be 
those which use the higher, line-of-sight frequencies, and 
with the advent of space-based satellite navigation, such as 
GPS, these also have promoted the most users and 
applications for radio time dissemination.

1616. Standard Time Broadcasts

The World Radiocommunication Conference (WRC), 
is the means by which the International Telecommuni-
cations Union (ITU), allocates certain frequencies in five 
bands for standard frequency and time signal emission. For 
such dedicated standard frequency transmissions, the ITU 
Radiocommunication Sector (ITU-R) recommends that 
carrier frequencies be maintained so that the average daily 
fractional frequency deviations from the internationally 
designated standard for measurement of time interval 
should not exceed ± ten parts per trillion. 

1617. Time Signals

The modern method of determining chronometer error 
and daily rate is by comparison to time recovered from ra-
dionavigation signals. The most accurate and readily 
available method for vessels is from navigation receivers of 
GPS, or other GNSS, and/or, where available, Enhanced 
Long Range Navigation (eLORAN) signals. Also, many 
maritime nations broadcast time signals on short-wave fre-
quencies, such as the U.S. station (WWV), or German 
station (DCF77). Further discussion can be found in NGA 
Pub. 117, Radio Navigational Aids and the British Admiral-
ty List of Radio Signals. A list of signals transmitted by 
timing labs is published in the Annual Report of the Inter-
national Bureau of Weights and Measures (BIPM). The 
BIPM report is currently available on the Internet (see Fig-
ure 1617a). An important reason for employing more than 
one technique is to guard against both malfunction in equip-
ment or malicious interference, such as spoofing.

If a vessel employs a mechanically actuated (main-
spring) chronometer or even an atomic clock, the time 

Figure 1617a. BIPM Annual Report on Time Activities. 
http://www.bipm.org/en/bipm/tai/annual-report.html
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Figure 1617b. Broadcast format of station WWV.

Figure 1617c. Broadcast format of station WWVH.
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should nonetheless be checked daily against a time derived 
from radio signals, beginning at least three days prior to de-
parture. The offset and computed rate should be entered in 
the chronometer record book (or record sheet) each time 
they are determined, although for an atomic clock the main 
concern is catastrophic or end of life failure. For example, 
cesium-beam tube atomic clocks have a limited life due to 
the consumption of the cesium metal during extended oper-
ation, typically 5 to 7 years.

For the U.S. the National Institute of Standards and 
Technology (NIST) broadcasts continuous time and fre-
quency reference signals from WWV, WWVH, and 
WWVB. Because of their wide coverage and relative sim-
plicity, the HF services from WWV and WWVH are used 
extensively for navigation. Station WWV broadcasts from 
Fort Collins, Colorado at the internationally allocated fre-
quencies of 2.5, 5.0, 10.0, 15.0, and 20.0 MHz; station 
WWVH transmits from Kauai, Hawaii on the same fre-
quencies with the exception of 20.0 MHz. The broadcast 
signals include standard time and frequencies, and various 
voice announcements. Details of these broadcasts are given 
in NIST Special Publication 432, NIST Frequency and 
Time Dissemination Services. Both HF emissions are de-
rived from cesium beam atomic frequency standards with 
traceable reference to the NIST atomic frequency and time 
standards.

The time ticks in the WWV and WWVH emissions are 
shown in Figure 1617b and Figure 1617c. The 1-second 
UTC markers are transmitted continuously by WWV and 
WWVH, except for omission of the 29th and 59th marker 
each minute. With the exception of the beginning tone at 
each minute (800 milliseconds) all 1-second markers are of 
5 milliseconds duration and at a tone of 440 Hz. Each pulse 
is preceded by 10 milliseconds of silence and followed by 
25 milliseconds of silence. Time voice announcements are 
given also at one minute intervals. All time announcements 
are UTC.

As explained in the next section, Coordinated Univer-
sal Time (UTC) may differ from (UT1) by as much as 0.9 
second; the actual difference can be found at IERS web 
pages Bulletin A, which published on the internet at 

http://datacenter.iers.org/eop/-/somos/5Rgv/latest/6. NGA 
Pub. No. 117, Radio Navigational Aids, should be referred 
to for further information on time signals.

1618. Leap-Second Adjustments

By international agreement, UTC is maintained to be 
no more than ± 0.9 seconds from agreement with the con-
tinuous celestial timescale, UT1. The introduction of leap 
seconds allows a clock maintaining UTC to stay approxi-
mately coordinated with mean solar time or stay near the 
procession of the fictitious mean sun across the sky. The in-
sertion of leap seconds makes UTC a discontinuous 
timescale. The main contributor to the need for a leap sec-
ond adjustment is the slowing of the Earth's rotation at 
about 1.7 ms/century. However, because of irregular varia-
tions in the yearly rate of the rotation of the Earth, year over 
year occurrences of the insertion of a leap seconds is not 
predictable.

The Central Bureau of the International Earth Rotation 
and Reference Frames Service (IERS) decides upon and an-
nounces the introduction of a leap second. The IERS 
announces the leap second insertion at least eight weeks in 
advance. Because of the irregularity of the Earth's rotation, 
the IERS provides that a second may be advanced or retard-
ed, positive or negative leap second, though a negative leap 
second has never been required since its institution in 1972. 
The leap second is introduced as the last second of a UTC 
month, but first preference is given to the end of December 
and June, and second preference is given to the end of 
March and September. A positive leap second begins at 23 
h 59 m 60 s and ends at 00 h 00 m 00 s of the first day of the 
following month. In the case of a negative leap second, 23 
h 59 m 58 s is followed one second later by 00 h 00 m 00 s 
(skipping 23 h 59 m 59 s) of the first day of the following 
month. Leap second adjustments of UTC are performed 
uniformly, and in synchrony (per interval of a SI second) 
across the world.

The dating of events in the vicinity of a leap second is 
effected in the manner indicated in Figure 1618a and Figure 
1618b. 

Figure 1618a. Dating of event in the vicinity of a positive leap second.
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Whenever a leap second adjustment is to be made to 
UTC, navigators are advised by information presented on 
the web pages of the United States Naval Observatory, US-
NO, IERS Bulletin C and the International Bureau of 
Weights and Measures (BIPM). Additional information is 
available on the USNO and IERS webpages (see Figure 
1618c and Figure 1618d).

1619. Use of Time, Time-interval, and other Novel 
Techniques for Approximate Determination of 
Chronometer Time, Latitude, and Longitude.

There may arise situations in which a mariner needs to 
address the problem of determining date, time, latitude, and 
longitude using only minimal resources and with little, if 
any, prior knowledge of the values of these parameters. 
Given this, it is useful to consider the value of using simple 
time, “time-interval”, azimuth, “azimuth interval”, and 
“instrument-free” or “instrument-limited” measurements, 
performed in conjunction with table look-up of data from 
the Air or Nautical Almanacs and/or back-of-the-envelope 
computations. The term “instrument-limited”, in this 
context, applies when azimuth readings are made with a 
simple compass, and elevation readings are accomplished 
using a handheld inclinometer rather than a sextant or 
tripod-mounted surveying transit. 

Figure 1619 illustrates a convenient instrument, which 
is a combined inclinometer/compass that can be used on 
land without a clearly defined horizon, and at night using 

internal illumination. One of the user's eyes reads the inter-
nal scales while the other eye lines the internal graticule up 
with the star or other object being measured. The human 
ability to merge the different optical images into one per-
ceived image is not universal. Up to 15% of individuals are 
unable to merge the different visual images. Although not 
of sextant accuracy, the device is rugged and portable, and 
is precise to about 1 degree for handheld use without a 
tripod.

Note that a modern smart phone, with its built in clock, 
camera, inclinometer, and compass can be used for the 
same purpose if GPS is denied, and can also be pro-
grammed with a star atlas, almanac data, and navigation 
algorithms. However, the successful use of a smartphone as 
a combined sextant, chronometer, and navigation computer 
depends critically on battery life.

The level of precision of an inclinometer and compass 

Figure 1618b. Dating of event in the vicinity of a negative leap second.

Figure 1618c. USNO leap second data between January 
1972 and January 2017. Link: 

http://tycho.usno.navy.mil/leapsec.html

Figure 1619. Combined compass/inclinometer with 
internal lighting and automatic leveling.
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can be compared with the celestial measurements described 
previously as follows. Sextant measurements typically have 
a best-case precision of 0.2 minutes of arc. Related time 
measurements are typically accomplished with a resolution 
of one second. Note that 1 minute of arc at the equator cor-
responds to a distance of one nautical mile and equates to 
four seconds of clock time. Thus, it takes 4 seconds for the 
earth to rotate one arc-second around its axis. 

With respect to precision measurement of time, knowl-
edge of Greenwich or Universal time is typically specified 
to less than quartz clock accuracy (i.e., to about one second 
resolution). When there is a clock offset bias, its value and 
drift rate are typically known. It will often be the case that 
local time is synchronized to Greenwich time within one 
second, even for everyday consumer applications, and far 
better than this for time signals disseminated from a wire-
less network to one's cell phone.

Note that the poor relative precision of a magnetic 
compass with respect to that of a sextant precludes the com-
bined use of sextant and azimuth measurements. However, 
when an inclinometer of limited precision is the best avail-
able instrument, it can also be beneficial to include 
compass-derived azimuth measurements of comparable 
precision.

With this background, some useful examples of rela-
tively simple, but in certain situations of great value, 
navigation techniques are presented.

1. Quick observation of Polaris and the northern 
sky to approximate latitude and longitude. To 
estimate latitude simply make an observation 
(when in the northern hemisphere) of Polaris, the 
north star. If Greenwich or universal time is 
available using a simple quartz watch or cell phone, 
longitude can be inferred. This can be done with the 
help of a star chart, by observing the “clock angles” 
of the constellation Cassiopeia and Canis Major 
(the big dipper).   Experienced viewers of the night 
sky routinely estimate time by unassisted 
observations of the moon and of the constellations 
of the Zodiac.

2. Noon observation of the sun to compare with an 
observation of Polaris to determine solar 
declination, and hence to determine 
approximate date and time. During daylight 
hours, the maximum angle of the sun above the 
horizon at local apparent noon can be determined 
by a series of measurements made at time intervals 
of a few minutes. The highest elevation angle of the 
sun, Elevationsun, occurs at local noon when the 
sun is due south of the observer. This measurement, 
combined with the estimate of latitude from
measurement of the north star, Polaris, yields the 
declination of the sun. Specifically, the latitude 
value obtained from measurement of Polaris is 

related to the solar declination by the equation: 

The declination depends on time, but not on the 
observer's position. An approximate measurement 
of the declination can be matched to the daily tables 
in the Nautical Almanac to yield the date, and 
within a few hours, a value for Universal Time 
(which in this context can be regarded as being 
equivalent to Greenwich Mean Time, or GMT). For 
example, the elevation of the sun on September 30, 
2016 measured at 1700 hours GMT is computed, 
from the Nautical Almanac, to be 47:50:30 
deg:min:sec with an azimuth of 180.8 degrees, 
indicating that the measurement is made at a time 
that is very close to local apparent noon. Using the 
equation above, we deduce that the declination is 
latitude + elevation - 90 = 39:00:00 +47:50:30 - 
90:00:00 = -3:09:30, in very close agreement with 
the Nautical Almanac lookup value of -3:09:18 
deg:min:sec. 

Using this value of declination to identify a ta-
ble entry in the Nautical Almanac takes one 
immediately to the daily entry for September 30, 
2016 at 1700 hours universal time (e.g., GMT), 
thus illustrating the causal relationship between so-
lar declination and date and time. Once GMT is 
known, the traditional methods of determining lat-
itude and longitude using the stars, planets, and/or 
sun can be implemented.

Of course, if one knows Greenwich time to high 
precision from, for example, a digital watch, this 
same measurement, in conjunction with another 
measurement of the sun at a different point in time, 
yields the traditional running fix, which lies in the 
purview of the earlier sections of this chapter.

3. Observations of sunrise and sunset to determine 
longitude. If Greenwich time is known from a dig-
ital watch and an intelligent estimate of the relevant 
time zone, a simpler implementation of the running 
fix is easily accomplished. In this case, one mea-
sures only the times of sunrise and sunset, neither 
of which requires a sextant or artificial horizon 
when a clear horizon is available (i.e., on or near 
the ocean or other large body of water. The value 
for local noon is given as the midpoint in local time 
of the sunrise and sunset measurements. When this 
value is corrected to Greenwich time by the appro-
priate time zone corrections, the longitude is 
estimated by multiplying the time of local noon by 
15 degrees per hour.

A better estimate of longitude is then obtained 
by adding/subtracting the requisite correction for 
the equation of time. This is found on the daily page 
of the Nautical Almanac for the date and time of the 
observation, and is added/subtracted to the value of 

90 degrees Elevationsun declination+– Latitude=
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time that is then multiplied by the factor of 15 de-
grees per hour.

For example, the Washington Post newspaper 
provides daily values for local sunrise and sunset. 
On September 30, 2016, these are given as 7:03 
A.M. and 6:52 P.M. EDT. Subtracting 1 hour to 
change to standard time, then taking the midpoint 
time yields a value for local noon of 11:57:30 
h:m:s. Adding 10 minutes as the approximate cor-
rection for the equation of time (taken from the 
Nautical Almanac daily page for September 30th) 
corrects the time of local noon to GMT/UT, result-
ing in a value of 12:07:30 h:m:s.

If Washington was precisely 5 times zones 
away from Greenwich, then local noon in Wash-
ington would occur at 12:00:00 local time, after 
correcting for the equation of time. Five time 
zones, at 15 degrees per hour, is 75 degrees of lon-
gitude. Adding the additional 7.5 minutes 
corresponds to an additional 1.9 degrees of longi-
tude, yielding a putative value for the longitude of 
Washington D.C. of 77 degrees West. (Note that 
the Naval Observatory, USNO, is at 38.9217° N, 
77.0669° W).

4. Compass measurement of the azimuth to Polaris 
to determine latitude and magnetic variation in
order to determine position when latitude is al-
ready known. Measurements made using a simple
compass can be surprisingly useful. Measurement
of the bearing of Polaris can be used to determine
the local value of magnetic variation. Combined
with an observation of latitude using an inclinome-
ter or sextant, a map of magnetic variation versus
latitude can then be used to generate an approxi-
mate position measurement.

In cases where magnetic variation is not known, 
relative bearing measurements yield “azimuth in-
terval” measurements which remove the common 
mode error due to magnetic variation. In any case, 
the approach described herein is used routinely for 
pointing certain types of portable satellite tele-
phone terminals at the appropriate satellite location 
in the geostationary arc. 

5. “Guess and Test” using simple Nautical Alma-
nac equations in order to take advantage of
combined elevation and azimuth measurements. 
Nautical Almanac computations can be quite com-
plicated. For the purposes of this section, a

convenient path forward is to use the straightfor-
ward equations for computing the calculated values 
of elevation angle Hc and azimuth Z from assumed 
values of the time, Greenwich Hour Angle (GHA), 
Sidereal Hour Angle (SHA), and declination for the 
celestial objects of interest. The relevant equations 
are given in the Nautical Almanac and are readily 
implemented using a calculator or perhaps a smart-
phone “App”.

Rather than use traditional iterative computa-
tions, this approach requires one to guess an 
“assumed position” and test the computed values of 
elevation Hc and azimuth Z against their measured 
values. One utility is that this provides a convenient 
way to integrate compass measurements of azi-
muth, corrected for magnetic variation as described 
above, into the data stream. The benefit is that a 
single sighting of the sun, if an azimuth measure-
ment is included, provides the two data points 
needed to compute a latitude and longitude fix. 
There simply may not be time, or suitable weather 
conditions, to compute a running fix. The running 
fix, as described above, requires multiple measure-
ments of the sun at widely spaced intervals of time.

6. Cloudy night celestial navigation. On a cloudy
night, when only a single star is visible through a
break in the clouds, a single measurement of the el-
evation and azimuth to a star lets one compute a
location fix. Even if the identity of the star is not
known, it is possible to perform the Hc and Z com-
putations, for the assumed position, for several
stars. Then the star whose measurement yields the
most plausible position fix can often be reliably be
assumed to be the star that was actually observed.
Note that even a poor measurement of azimuth can
be used to help identify the name, and hence the
correct declination and sidereal hour angle values,
to be used in the position computation.

There are many variations and extensions of 
these techniques and methods. The combination of 
a precision time reference and an accurate sextant 
is regaining favor after decades of single-system 
dependence on GPS, and more recently, E-LO-
RAN. In extremis, and with little practice, even a 
combination of a protractor with a home-made 
plumb bob and a simple pendulum of length L and 

period  might bring one safely home.L g⁄2π


